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Study Guide 

AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this 
product. 



  

 
 

    

 

 

  

 

   

   

    

   

    

   

  

  

 

      

  

 

 

 

  

  

 

  

 

             

        

 

 

  

 

 

 

  

 

       

       

 

Key Exam Details 

The AP® Calculus AB exam is a 3-hour and 15-minute, end-of-course test comprised of 45 

multiple-choice questions (50% of the exam) and 6 free-response questions (50% of the exam). 

The exam covers the following course content categories: 

• Limits and Continuity: 10–12% of test questions 

• Differentiation: Definition and Basic Derivative Rules: 10–12% of test questions 

• Differentiation: Composite, Implicit, and Inverse Functions: 9–13% of test questions 

• Contextual Applications of Differentiation: 10–15% of test questions 

• Applying Derivatives to Analyze Functions: 15–18% of test questions 

• Integration and Accumulation of Change: 17–20% of test questions 

• Differential Equations: 6–12% of test questions 

• Applications of Integration: 10–15% of test questions 

This guide offers an overview of the core tested subjects, along with sample AP multiple-choice 

questions that are like the questions you’ll see on test day. 

Limits and Continuity 

Around 10‒12% of the questions on your AP Calculus AB exam will feature Limits and 

Continuity questions. 

Limits 

The limit of a function f as x approaches c is L if the value of f can be made arbitrarily close to L 

by taking x sufficiently close to c (but not equal to c). If such a value exists, this is denoted 

lim ( )
x c

f x L
→

= . If no such value exists, we say that the limit does not exist, abbreviated DNE. 

Limits can be found using tables, graphs, and algebra. 

Example 

Some values of a function are given in the table below. 

x 0.9 0.99 0.999 1.001 1.01 1.1 

f(x) 2.488 2.490 2.499 2.501 2.504 2.513 
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Based on these values, it appears that 
1

( ) 2.5lim
x

f x
→

= , since the values of the function are 

growing close to 2.5 as c approaches 1. 

Important algebraic techniques for finding limits include factoring and rationalizing radical 

expressions. Other helpful tools are given by the following properties. 

Suppose lim ( )
x c

f x L
→

= , lim ( )
x c

g x M
→

= , lim ( )
x L

h x N
→

=

•  )l )im ( (
x c

f x g x L M
→

+ = +

•  )l )im ( (
x c

f x g x L M
→

− = −

•  lim ( )
x c

aLaf x
→

=

• 
( )

lim
( )x c

f x L

g x M→
= , as long as 0M 

• ( )lim ( )
x c

Nh f x
→

=

, and a is any real number. Then, 

For many common functions, evaluating limits requires nothing more than evaluating the 

function at the point c (assuming the function is defined at the point). These include polynomial, 

rational, exponential, logarithmic, and trigonometric functions. 

Two special limits that are important in calculus are 
0

sin
lim 1
x

x

x→
= and 

0

1 cos
lim 0
x

x

x→

−
= . 

One-Sided Limits 

Sometimes we are interested in the value that a function f approaches as x approaches c from 

only a single direction. If the values of f get arbitrarily close to L as x approaches c while taking 

on values greater than c, we say lim ( )
x c

f x L
+→

= . Similarly, if x is taking on values less than c, we 

write . lim ( )
x c

f x L
−→

=

We can now characterize limits by saying that lim ( )
x c

f x
→

exists if and only if both lim ( )
x c

f x
+→

and 

lim ( )
x c

f x
−→

exist and have the same value. A limit, then, can fail to exist in a few ways: 

• lim ( )
x c

f x
+→

does not exist 

• lim ( )
x c

f x
−→

does not exist 

• Both of these one-sided limits exist, but have different values 
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Example 

The function shown has the following limits: 

• 
2

1l ( )im
x

f x
−→−

= −

• 
2

1li ( )m
x

f x
+→−

=

• 
2

)li (m
x

f x
→−

DNE 

• 
1

4l ( )im
x

f x
−→

=

• 
1

4l ( )im
x

f x
+→

=

• 
1

4l ( )im
x

f x
→

=

Note that (1) 3f = , but this is irrelevant to the value of the limit. 

Infinite Limits, Limits at Infinity, and Asymptotes 

When a function has a vertical asymptote at x = c, the behavior of the function can be described 

using infinite limits. If the function values increase as they approach the asymptote, we say the 

limit is ¥, whereas if the values decrease as they approach the asymptote, the limit is -¥. It is 

important to realize that these limits do not exist in the same sense that we described earlier; 

rather, saying that a limit is ±¥ is simply a convenient way to describe the behavior of the 

function approaching the point. 

We can also extend limits by considering how the function behaves as x® ±¥. If such a limit 

exists, it means that the function approaches a horizontal line as x increases or decreases without 
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bound. In other words, if ( )lim
x

f x L
→

= , then f has a horizontal asymptote y = L. It is possible for 

a function to have two horizontal asymptotes, since it can have different limits as x®¥ and 

x®-¥ . 

Example 

The function above has vertical asymptotes at 2x = − and 3x = , and a horizontal asymptote at 

1y = . Looking at the graph, we can determine the following limits: 

• 

• 

• 

• 

2
lim ( )

x
f x

−→−
= 

2
lim ( )

x
f x

+→−
= −

3
lim ( )
x

f x
→

= 

lim ( ) 1
x

f x
→

=

The Squeeze Theorem 

The Squeeze Theorem states that if the graph of a function lies between the graphs of two other 

functions, and if the two other functions share a limit at a certain point, then the function in 

between also shares that same limit. More formally, if )( () ( )g x xf hx   for all x in some 

interval containing c, and if lim ( ) lim ( )
x c x c

f x h x L
→ →

= = , then lim ( )
x c

g x L
→

= as well. 
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Example 

The sine function satisfies sin 11 x − for all real numbers 

2x

x, so 11
1

sin
x

 
  

 
−

2 2 21
sinx x

x
x−

 
  

 

is also true 

for all real numbers x. Multiplying this inequality by , we obtain . Now 

the functions on the left and right of the inequality, 2x and 2x− , both have limits of 0 as 0x → . 

Therefore, we can conclude that 2

0

1
lim sin 0
x

x
x→

 
= 

 
also. 

Continuity 

The function f is said to be continuous at the point x c= if it meets the following criteria: 

1. ( )f c exists 

2. )lim (
x c

f x
→

exists 

3. ( ) ( )lim
x c

f x f c
→

=

In other words, the function must have a limit at c, and the limit must be the actual value of the 

function. 

Each of the previously mentioned criteria can fail, resulting in a discontinuity at at x c= . 

Consider the following three graphs: 

In graph A, the function is not defined at c. In graph B, the function is defined at c, but the limit 

as x c→ does not exist due to the one-sided limits being different. In graph C, the function is 

defined at c and the limit as x c→ exists, but they are not equal to each other. 

The discontinuity in graph B is referred to as a jump discontinuity, since it is caused by the graph 

jumping when it reaches at x c= . In contrast to this is the situation in graph C, where the 

discontinuity could be fixed by moving a single point; it occurs whenever the second condition 
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above is satisfied and is called a removable discontinuity. If lim ( )
x c

f x
→

exists, but f has a 

discontinuity at x c= because it fails one of the other conditions, the discontinuity can be 

removed by defining or redefining ( )f c to be equal to the limit at that point. 

A function is continuous on an interval if it is continuous at every point in the interval. The 

following categories of functions are continuous at every point in their respective domains: 

• Polynomial 

• Rational 

• Power 

• Exponential 

• Logarithmic 

• Trigonometric 

If f is a piecewise-defined function with continuous component functions, then checking for 

continuity consists of checking whether it is continuous at its boundary points. Continuity at a 

boundary point requires that the functions on both sides of the point give the same result when 

evaluated at the point. 

Example 

Consider the function 2

5

3 2

( ) 0 4

0

1

10sin 4
8

x x

f x x

x
x

x




 +


=  





 −

+




Each of the component functions are continuous at all real numbers, so we need only check 

continuity at x = 0 and x = 4. For x = 0, the function to the left is 3(0) 2 2+ = , and to the right we 

have 2 1(0) 1− = − . These are not equal, so there is a jump discontinuity at x = 0. 

Looking now at x = 4, the results from the functions on the two sides are 42 – 1 = 15 and 

4
sin 155 10

8


=+ . Since these are equal, the function is continuous at x = 4. 

Intermediate Value Theorem 

The Intermediate Value Theorem applies to continuous functions on an interval  ,a b . If d is any 

value between f(a) and f(b), then there must be at least one number c between a and b such that 

f(c) = d. 
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Example 

Consider 2( ) xf x e −= , which is continuous everywhere. We have 0 2 1(0)f e= − = − , and 

(1) 2f e= − , which is certainly positive. If we take d = 0 in the statement of the theorem, then d 

is between f(0) and f(1). Therefore, the Intermediate Value Theorem guarantees at least one value 

c between 0 and 1 with the property that f(c) = 0. This value, of course, is ln 2c = . 

Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapter 1. 

7th edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 2. 7th edition. Boston, 

MA: Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 2. 9th 

edition. Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 2. 4th edition. New York, NY: 

Macmillan Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

Chapter 1. 2nd edition. New York, NY: W.H. Freeman. 
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Practice Limits and Continuity Questions 

Do not use a calculator for the following two problems. 

Suppose the graph of F(x) is given by the following: 

Which of the following statements is TRUE? 

A. 
5

lim ( ) 2
x

F x
→ +

= −

B. 
8

lim ( ) 3
x

F x
→ −

=

C. 
6

lim ( )
x

F x
→

does not exist. 

D. 
2

lim ( ) 3
x

F x
→

=

The correct answer is B. This is true since the closer you take x values from the left side of 8, 

the closer the corresponding y-values on the graph of F(x) get to 3. Choice A is actually the 

value of the left-sided limit at 5. The right-sided limit at 5 is 0. The limit in choice C is actually 

equal to 6. Remember, a function need not be defined at an x-value in order to have a limit there. 

Choice D is incorrect because even though F(2) = 3, the y-values get close to 2, not 3. 

Compute the limit: 
sin( )

lim 3
2x

xx

x



 →

 − −
+ − 

− 
. 

9 
A. − 

2 
7 

B. − 
2 
5 

C. − 
2 
3 

D. − 
2 
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The correct answer is B. Use the limit theorem “limit of a sum/difference is the sum/difference 
of the limits”: 

sin( ) sin( )
lim 3 lim lim lim3

2 2x x x x

x xx x

x x   

 

   → → → →

 −  −− −
+ − = + − 

− − 

Now, compute each limit separately: 

sin( ) sin( ) sin( )
lim lim lim (1) 1

( ) ( )

1
lim  (by continuity)

2 2 2 2

lim 3 3

x x x

x

x

x x x

x x x

x

  





  

  

 

  

→ → →

→

→

− − −
= = − = − = −

− − − −

− −
= = =

=

Substituting these into the above equation yields 

sin( ) sin( ) 1 7
lim 3 lim lim lim3 1 3

2 2 2 2x x x x

x xx x

x x   

 

   → → → →

 −  −− −
+ − = + − = − + − = − 

− − 
. 

You may use a graphing calculator to solve the following problem. 

Consider the function . Which of the following statements, if either, is 
( )1cos , 0

( )
3, 0

x
x x

H x
x

 
= 

=

true? 

(I) H(x) appears to have a removable discontinuity at x = 0. 

(II) (0) 0H   . 

A. I only 

B. II only 

C. Both I and II 

D. Neither I nor II 

The correct answer is A. Use the graphing calculator to graph H(x): 
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If you continue to zoom in on the origin, it becomes evident that 
0

lim ( ) 0
x

H x
→

= . Since H(0) = 3, 

there is a removable discontinuity at x = 0. So, (I) is true. As such, (II) must be false because 

H(x) is discontinuous at x = 0, and hence cannot be differentiable at x = 0. 

10 



  

 

 

 

 

 

 

  

 

    

    

 

   

 

  

 

   

   

  

 

  

  

 

    

 

   

   

 

 

 

 

 

 

 

 

 

Differentiation: Definition and 

Fundamental Properties 

On your AP exam, 10‒12% of questions will cover Differentiation: Definition and Fundamental 

Properties. 

Definition of the Derivative 

The average rate of change of a function f over the interval from x a= to x a h= + is 

( ) ( )f a h f a

h

+ −
. Alternatively, if x a h= + , this can be written as 

( ) ( )f x f a

x a

−

−
. When h is made 

smaller, so that it approaches 0, the limit that results is called the instantaneous rate of change of 

f at x a= , or the derivative of f at x a= , and is denoted ( )f a . 

That is, , or equivalently, . 
0

( ) ( )
( ) lim

h

f a h f a
a

h
f

→

+ −
 =

( ) ( )
( ) lim

x a

f x f a
a

x a
f

→

−
 =

−

If this limit exists, f is said to be differentiable at a. Graphically, ( )f a represents the slope of 

line

x a=

 tangent to the graph of ( )f x

)( )( ()y f aa af x −− =

at the point where x a= . Therefore, the line tangent to 

at is . 

( )f x

If the function ( )y f x= is differentiable at all points in some interval, we can define a new 

function on that interval by finding the derivative at every point. This new function, called the 

derivative of f, can be denoted ( )f x , y , or 
dy

dx
, and is defined by 

0

( ) ( )
( ) lim

h

f x h f x
x

h
f

→

+ −
 = . 

The value of the derivative at a particular point, x a= , can then be denoted ( )f a or 
x a

dy

dx =

. 

If f is differentiable at x a= , then it also must be continuous at x a= . In other words, if a 

function fails to be continuous at a point, it cannot possibly be differentiable at that point. 

Another way that differentiability can fail is via the presence of sharp turns or cusps in a graph. 

11 



  

 

 

  

 

 

 
 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

    

  

  

  

 
 

     

     

   

     

 
 

Example 

The graph of a function is shown below. 

This function is differentiable everywhere except 3x = − (because it is not continuous there) and 

1x = (because it has a cusp there). 

Free Response Tip 

When specific function values are given, the derivative at a point 

can be approximated by finding the average rate of change 

between surrounding points. For example, if you are given values 

of a function at x = 3, 4, and 5, then the derivative at 4 can be 

approximated by the average rate of change between 3 and 5. 

Basic Derivatives and Rules 

There are several rules that can be used to find derivatives. Assume f and g are differentiable 

functions, and c is a real number. 

• The constant rule: 0
d

c
dx

=

1n nd
x

x
nx

d

−=• The power rule: , for any real number n 

12 



  

  

  

  

  

  

 

 

 

 

   

 

  

  

 
 

  

  

  
  
  

  

 

 

 

 

 

    

 

 

 

 

   

• The sum rule:  ( ) ( ) ( ) ( )
d

f x g x f x g x
dx

+ =  + 

• The difference rule:  ( ) ( ) ( ) ( )
d

f x g x f x g x
dx

− =  − 

• The constant multiple rule:  ( ) ( )
d

cf x cf x
dx

= 

• The product rule: 

• The quotient rule: 

 ( ) ( ) ( ) ( ) ( ) ( )
d

f x g x f x g x f x g x
dx

=  + 

 
2

( ) ( ) ( ) ( ) ( )

( ) ( )

d f x x g x f x g x

dx g x g x

f   − 
= 

 

As special cases of the power rule, note that ( )
d

cx c
dx

= , and 1
d

x
dx

= . 

In addition to these rules, the derivatives of some common functions are as follows: 

( )f x ( )f x
xe xe

ln x 1

x
sin x cos x

cos x sin x−

tan x 2sec x
sec x sec tanx x
csc x csc cotx x−
cot x 2csc x−

The last four of these can be derived using the product or quotient rule along with the derivatives 

of sin x and cos x . 

Example 

If 2 si) n( 3f xx x= , then using the power and product rules, we have 2( ) 6 sin 3 cosx x x x xf  = + . 

Example 

Let 
2

cos

xxe

x
y = . Using the product rule, the derivative of the numerator is 2 2x xe xe+ . Therefore, 

by the quotient rule, the derivative of the entire function is 
( ) ( )

2

2 2 cos 2 sin

cos

x x x

y
x

e xe x xe x+ −
=

−
. 

13 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 
    

  

  

  

 
    

  

  

 

 
  

 

Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapters 

2 and 3. 7th edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 3. 7th edition. Boston, 

MA; Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapters 2 and 3. 

9th edition. Boston, MA; Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 3. 4th edition. New York, NY: 

Macmillan Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

Chapter 2. 2nd edition. New York, NY: Macmillan 

Learning. 
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Practice Differentiation: Definition and Fundamental Properties 

Questions 

Do not use a calculator for the following problems. 

Find the equation of the tangent line to the curve 
3 2 2 23 0y yx x y+ + − = at the point (–1,1). 

A. y = 4x + 5 

B. y = 0 

C. y = –2x – 1 
32

5 5
x− +D. y = 

The correct answer is C. First, implicitly differentiate both sides of the equation with respect to 

x and solve for y : 

( )

2 2

2 2

2 2

3 2 2 6 0

3 6 2 2

2 2

3 6

y y y x x y x y y

y y x y x xy

x xy
y

y x y

  +  +  + − =

 + − = − −

− −
 =

+ −

The slope of the tangent line is 
1, 1x y

y
=− =

 , computed as follows: 

2 21, 1

2( 1) 2( 1)(1)
2

3(1) ( 1) 6(1)x y
y

=− =

− − − −
 = = −

+ − −
. 

So, the equation of the tangent line to this curve at the point (–1,1) is y – 1 = –2(x + 1), or 

equivalently, y = –2x – 1. 

If , compute (1)y . 
2 3

( )
x

y x
x x− −

=
+

7 
A. − 

4 
3 

B. − 
4 
1 

C. − 
5 

7 
D. 

4 

The correct answer is D. Use the quotient rule: 

15 



  

  

 

  

 

 

 

 

 

  

 

 

  

  

  

 

 

  

 

 

 

 

  

 

  

  

 

 

 

 

 

( ) ( )

( )

( ) ( )

( )

2 3 2 3 2 3 3 4

2 2
2 3 2 3

1 2 3
( )

d d
dx dx

x x x x x x x x x x x
y x

x x x x

− − − − − − − −

− − − −

+  −  + +  −  − −
 = =

+ +

Now, simply substitute x = 1 in to obtain 

( ) ( )

( )

2 3 3 4

2 22 3

1 1 1 1 2 1 3 1 2 ( 5) 7
(1)

2 41 1
y

− − − −

− −

+  −  −  −  − −
 = = =

+

What is the equation of the line passing through the point (–2, 1) that is perpendicular to the 

tangent line to the curve y(x) = sec(x) + 2sin(x) at x = ? 

A. 1
2

y x= −

B. 1
2

2y x= +

C. 2 3y x= − −

D. 2 2 1y x = − + −

The correct answer is B. We already have a point on the line, namely (–2, 1). It remains to 

determine its slope. Since the line must be perpendicular to the tangent line, its slope is the 

negative reciprocal of the slope of the tangent line at x = ; that is, its slope equals 1
( )y − . 

Observe that 

( ) sec tan 2cos

( ) sec tan 2cos ( 1)(0) 2( 1) 2

y x x x x

y    

 = +

 = + = − + − = −

1 
Thus, the slope of the line we seek is . Using point-slope formula, we find that the equation of 

2 

the desired line is 1
2

1 ( 2)y x− = + , or equivalently 1
2

2y x= + . 

16 



  

 

 

 

  

 

  

 

 

 

 

 

 

 

    

   

 

  

  

 

 

 

  

 

 

  

 

  

    

   

 

 

 

 

Differentiation: Composite, Implicit, and 

Inverse Functions 

Between 9‒13% of the questions on your AP Calculus exam will cover Differentiation: 

Composite, Implicit, and Inverse Functions. 

Chain Rule 

The chain rule makes it possible to differentiate 

( ( )) ( )f g x gy x =   

composite functions. ( ( ))y f g x=

( )y f u= ( )u g x=

If , then the 

chain rule states that . In alternative notation, if and , then 

dy dy du

dx du dx
=  . 

Example 

If 2 )sin(6 5x xy = − , then ( ( ))y f g x= , where ( ) sinf x x= and 2( 6 5) xg x x= − . Since 

( ) cos xf x = and ( ) 12 5g x x = − , the chain rule gives us 2cos(6 5 ) (12 5)y x x x = −  − . 

The chain rule can be extended to compositions of more than two functions by considering that 

( )g x , as described previously, may itself be a composition. If ( ( ( )))y f g h x= , two applications 

of the chain rule yield ( ( ( ))) ( ( )) ( )y f g h x g h x h x =      . 

Example 

Suppose 2tan) 3
3

(f x
x 

 
 

= . This is a composition of the functions 23x , tan x , and 
3

x
. Its 

derivative is 2 1
( ) 6 tan sec

3 3 3
f

x x
x

   
 =     

   
. 

Implicit Differentiation and Inverse Functions 

A function may sometimes be presented in implicit, rather than explicit, form. That is, it may not 

be given as ( )y f x= , but rather as an equation that relates x and y to each other. In such cases, 

we say that y is implicitly defined as a function of x . Implicit differentiation is the process of 

finding the derivative 
dy

dx
for such functions, and it is accomplished by applying the chain rule. 

17 



  

 

 

   

   

 

 

 

 

    

    

 

 

 

 

  

  

  

 

 

 

  

 

  

 

 

 

 

 

Example 

Consider the equation 3 3 5y x yx+ + = . Differentiating both sides of the equation with respect to 

x, and remembering that we are assuming that y is, in fact, a function of x (so that the chain rule 

applies), we get the following: 

( ) ( )3 3

2 2

5 5

3 3 1 01

d d
y x xy

dx dx

dy dy
y x y x

dx dx

+ + = =

 +  ++   =

Note that differentiating xy required an application of the product rule, and that every time an 

expression in terms of y was differentiated, the derivative was multiplied by 
dy

dx
. Now all of the 

terms with 
dy

dx
can be gathered on one side of the equation, and 

dy

dx
can be solved for: 

( )

2 2

2 2

2

2

3 3

3 3

3

3

dy dy
y x y x

dx dx

dy
y x y x

dx

dy y x

dx y x

 +  = − −

+ = − −

− −
=

+

This technique can also be applied to find the derivatives of inverse functions. Consider an 

invertible function f, with inverse 1f − . By definition, this means that ( )1( )f x xf − = . Now, 

differentiating both sides with respect to x, we get ( ) ( )1 1 ) 1( ()f f x f x− −   = . Solving for 

( )1 ( )f x−  , we have ( )
( )

1

1

1
( )

)(
f x

f f x

−

−
 =


. 

Example 

If (3) 5f = , and (3) 2f  = , then ( )1

1

1 1
(5)

( (5)) (3) 2

1
f

f ff

−

−
 = = =

 
. 

Applying this rule to the inverse trigonometric functions, we can find the following derivatives: 
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arcsin x

2

1

1 x−

arccos x

2

1

1 x

−

−

  

  

 
 

 
 

 
 

 
 

 
 

 
 

 

 

  

 

   

   

  

  

  

  
 

    

  

 
    

  

   

  

  

 

 

  

    

arccot x
2

1

1 x

−

+

2

1

1 x+

2

1

1x x −

2

1

1x x

−

−

arctan x

arcsec x

arccsc x

Higher Order Derivatives 

The derivative f 

f 

of a function 

f 

f is itself a function that may be

f 

 differentiable. 

f 

f 

f 

If it is, then its 

derivative is , called the second derivative of f. The relationship of and is identical to 

the relationship between f and . Similarly, the derivative of is , the third derivative of 

f. This process can continue indefinitely, as long as the functions obtained continue to be 

differentiable. After three, the notation changes, so that the 4th derivative of f is denoted (4)f , 

and the n th derivative is ( )nf . 

Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapter 3. 7th 

edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 3. 7th edition. Boston, MA: 

Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 3. 9th edition. 

Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 3. 4th edition. New York, NY: Macmillan 

Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. Chapter 

3. 2nd edition. New York, NY: W.H. Freeman. 
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If ( )y f x= , then higher order derivatives are also denoted (4) ( ) ,,,, , ny y y y    , or 
2 3

2 3
, , , ,

n

n

d y d y d y

dx dx dx
 

Sample Differentiation: Composite, Implicit, and Inverse Functions 

Questions 

Do not use a calculator for the following two problems. 

Suppose H(x) is a differentiable function. Which of the following equals (3 )d
dx

x H x 
 

? 

A. 

B. 

C. 

D. 

(3 )
3 (3 )

2

H x
x H x

x
 +

3 (3 )

2

H x

x



(3 )
(3 )

2

H x
x H x

x
+ 

2 32
3

1
(3 ) (3 )

2
x H x H x

x
 + 

The correct answer is A. First and foremost, this is a product, so you must use the product rule. 

When you differentiate H(3x), use the chain rule: 

( ) ( )
1

21
2

(3 ) (3 ) (3 )

3 (3 ) (3 )

(3 )
3 (3 )

2

d d d
dx dx dx

x H x x H x x H x

x H x x H x

H x
x H x

x

−

  =  + 
 

=  + 

=  +

Let m be a nonzero real number and let 
2

( ) mH x x= . Which of the following equals ( )H x ? 

A. 

B. 

C. 

D. 

( )( )
22 2 2 3( ) 1 2 mH x m m m x − = − −

( )( )( )

2 3

2 2 2
( )

1 2 3

mx
H x

m m m

+

 =
+ + +

23( ) (2 ) mH x m x =

( )( )
2 32 2 1 2 2( ) mH x m m m x
−− − =

20 



  

 

  

 

  

 

 

  

 

 

 

 

 

    

    

    

 

 

    

   

   

    

 

 

 

 

 

 

 

 

 

The correct answer is A. Apply the power rule three times successively to compute ( )H x : 

( )

( )( )

2

2

2

2 1

2 2 2

2 2 2 3

( )

( ) 1

( ) 1 2

m

m

m

H x m x

H x m m x

H x m m m x

−

−

−

 =

 = −

 = − −

You may use a graphing calculator to solve the following problem. 

( )( ) ln sin 2f x x=Which of the following is a complete list of x-values at which the function 

has an irremovable discontinuity? 

A. 

B. , where n is an integer 2x n=

2
nx =

x n=

C. , where n is an integer 

D. , where n is an integer 

The correct answer is C. The function y = ln(u) has a vertical asymptote when u = 0, and this is 

an irremovable discontinuity. So, f(x) will have a vertical asymptote at any x-value for which 

sin(2x) = 0. Observe that sin(2x) = 0 whenever 2x n= , where n is an integer. This is equivalent 

to saying 
2

nx = , where n is an integer. 

21 



  

  

 

 

 

 

  

  

 

  

 

  

  

 

 

 

 

  

    

 

 

  

 

  

 

   

    

   

   

  

  

  

  

 

 

 

 

 

 

Contextual Applications of Differentiation 

About 10‒15% of questions on the exam will cover Contextual Applications of 

Differentiation. 

In any context, the derivative of a function can be interpreted as the instantaneous rate of change 

of the independent variable with respect to the dependent variable. If ( )y f x= , then the units of 

the derivative are the units of y divided by the units of x. 

Straight-Line Motion 

Rectilinear (straight-line) motion is described by a function and its derivatives. 

If the function s(t) represents the position along a line of a particle at time t, then the velocity is 

given by )( ()v tt s=  . When the velocity is positive, the particle is moving to the right; when it is 

negative, the particle is moving to the left. The speed of the particle does not take direction into 

account, so it is the absolute value of the velocity, or ( )v t . 

The acceleration of the particle is )( () ( )ta v tt s = = 

( )a t

. The velocity is increasing when ( )a t is 

positive and decreasing when is negative. The speed, however, is only increasing when 

and ( )a t have the same sign (positive or negative). When ( )v t and ( )a t have different ( )v t

signs, the particle’s speed is decreasing. 

Related Rates 

Related rates problems involve multiple quantities that are changing in relation to each other. 

Derivatives, and especially the chain rule, are used to solve these problems. Though the 

problems vary widely with context, there are a few steps that usually lead to a solution. 

1. Draw a picture and label relevant quantities with variables. 

2. Express any rates of change given in the problem as derivatives. 

3. Express the rate of change you need to solve for as a derivative. 

4. Relate the variables involved in the rates of change to each other with an equation. 

5. Differentiate both sides of the equation with respect to time. This may involve applying 

many derivative rules but will always involve the chain rule. 

6. Substitute all of the given information into the resulting equation. 

7. Solve for the unknown rate. 

Example 

The length of the horizontal leg of a right triangle is increasing at a rate of 3 ft/sec, and the length 

of the vertical leg is decreasing at a rate of 2 ft/sec. At the instant when the horizontal leg is 7 ft 

and the vertical leg is 1 ft, at what rate is the length of the hypotenuse changing? Is it increasing 

or decreasing? 
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We will follow the steps given above. 

1. 

2. We are given 
3

dx

dt
=

and 
2

dy

dt
= −

. 

3. We need to find 
7, 1x y

dz

dt = =

. 

4. x, y, and z are related by the Pythagorean theorem: 2 2 2x y z+ = . 

5. Differentiating both sides of the equation and applying the chain rule (since all of the 

variables are functions of t), we get 2 2 2
dx dy dz

y z
dt dt dt

x + =

7x = 1y =

( )2(7)(3) 2(1)( 502) 2
dz

dt
+ − =

. 

6. After substituting all of the information we have, including , , and 

, the equation becomes . 2 27 1 50z + ==

7. Solving, we get 
19

50

dz

dt
= . The length of the hypotenuse is increasing since its derivative 

is positive, and it is doing so at a rate of 
19

50
ft/sec. 

Linearization 

The line tangent to a function at x c= is the best possible linear approximation to the function 

near x c= . Because of this, the tangent line, seen as a function ( )L x , is also called the 

linearization of the function at the given point. 
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Example 

We can use the linearization of 
2

( ) 3 xf x xe−= at x = 0 to approximate the value of f(0.1). To do 

this, we need to first find the derivative. 

Applying the product and chain rules, we get 
2 2 2 22( ) 3 23 3 6x x x xf x e x ex x ee− − − − =    −+ = − . The 

slope of the tangent line at 0x = is 0 0(0) 3 6(0 3)f e e = =− . The function passes through the 

point ( )0, (0) (0,0)f = , so the tangent line is 0 3( 0)y x− = − . 

The linearization of f at 0x = is ( ) 3L x x= , so the approximation of (0.1)f is 

. 

Note that the true value of (0.1)f is approximately 0.297, so the linear approximation 

(0.1) 3(0.1) 0.3L = =

was an overestimate. 

L'Hospital's Rule 

When two functions f and g either both have limits of 0 or both have infinite limits, we say that 

the limit of their ratio is an indeterminate form, represented by 
0

0
or 




. Limits that result in one 

of these forms can be evaluated using L’Hospital’s rule. The full statement of L’Hospitals rule is 

as follows: if 
( )

lim
( )x c

f x

g x→
approaches 

0

0
or 




, then 

( ) ( )
lim lim

( ) ( )x c x c

f x f x

g x g x→ →


=


. In other words, when 

we encounter one of these indeterminate forms, we can take the derivative of each of the 

functions, and then reevaluate the limit. 

Free Response Tip 

Limits that require application of L’Hospital’s Rule appear 
often in free response questions. Be careful not to confuse 

L’Hospital’s Rule with the quotient rule. The derivative of the 
ratio is not being taken; rather, the derivative of the numerator 

and denominator are taken separately. 
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Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapter 

4. 7th edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 4. 7th edition. 

Boston, MA: Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 4. 9th 

edition. Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 4. 4th edition. New York, NY: W.H. 

Freeman. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

Chapter 4. 2nd edition. New York, NY: Macmillan. 
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Practice Contextual Applications of Differentiation Questions 

Do not use a calculator for the following two problems. 

Compute the limit 
0

ln(tan )
lim

ln(sin )x

x

x→ +
. 

A. –1 

B. 0 

C. 1 

D. 

The correct answer is C. Plugging x = 0 into the expression shows that the limit is 
0 

indeterminate of the form . So, use l’Hopital’s rule: 
0 

21
tan

10 0 0
sin

secln(tan ) cot
lim lim lim

ln(sin ) cos

x

x x x
x

xx x

x x→ → →+ + +


= =



2sec

cot

x

x

 2 2

0
lim sec sec (0) 1

x
x

→ +
= = =

A spherical Mylar balloon is to be inflated so that its volume increases at a rate of 2 cubic inches 

per second to ensure that it does not burst. How fast is the diameter increasing when its diameter 

is 4 inches? 

A. 3
16

1
32

inches per second 

B. inches per second 

C. 1
4

1
8

inches per second 

D. inches per second 

The correct answer is C. Differentiate the volume formula 34
3

V r= with respect to t: 

2 24
3 4

3

dV dr dr
r r

dt dt dt
 =   = 

Now, substitute in the known information: 

3 2inches
sec

inches
sec

2 4 (2 inches)

1

8

dr

dt

dr

dt





= 

=
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Since D = 2r, it follows that inches
sec

1
2

4

dD dr

dt dt 
=  = . 

You may use a graphing calculator to solve the following problem. 

An object moves along a number line and its position at time t is given by ( ) cos(3 ),p t t t= 0t  . 

What is the first-time interval, approximately, on which the speed of the object is increasing? 

A. (0, 0.293) 

B. (0.623, 0.755) 

C. (0.291, 1.162) 

D. (0.755, 1.713) 

The correct answer is B. The speed function is ( )p t , which is given by 

( )( ) 3sin(3 ) cos(3 ) 3 sin(3 ) cos(3 )p t t t t t t t = − + = − +

Use the graphing calculator to get the following graph: 

Observe that the first interval on which this graph is increasing is (0.623, 0.755). 
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Analytical Applications of Differentiation 

Anywhere from 15‒18% of the questions on your AP exam will cover Analytical Applications of 

Differentiation. 

Mean Value Theorem 

The Mean Value Theorem states that if f is continuous on [a,b] and differentiable on (a,b), then 

there is at least one point between a and b at which the instantaneous rate of change of f is equal 

to its average range of change over the entire interval. In other words, there is at least one value c 

in the interval ( ),a b for which . 
( ) ( )

( )
f b f a

c
b a

f
−

 =
−

Example 

Let 2( )f x x= . Over the interval [3,7], the average rate of change of f is 
(7) (3) 40

10
7 3 4

f f−
= =

−
. 

Since f is continuous and differentiable everywhere, the Mean Value Theorem guarantees that 

there is at least one c between 3 and 7 for which ( ) 10f c = . Since ( ) 2f x x = , we can find the 

guaranteed value(s) of c by solving 2x = 10. In this case, of course, there is exactly one such 

value: x = 5. 

Free Response Tip 

When part of a free response question contains the phrase 

“explain why there must be a value…” you should immediately 
think of two theorems. If the function for which a value is being 

described is a derivative, consider the Mean Value Theorem 

first. If not, consider the Intermediate Value Theorem. In either 

case, make sure to justify why the theorem can be applied in 

terms of continuity and differentiability. 
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Intervals of Increase and Decrease and the First Derivative Test 

When the derivative of a function is positive, the function increases, and when the derivative is 

negative, the function decreases. To find intervals on which a function is increasing or 

decreasing, then, it is necessary to solve for where its derivative is positive or negative. The 

procedure for doing this involves first finding the values, called critical points, at which the 

derivative is zero or undefined. 

If f changes from increasing to decreasing at x c= , f has a local maximum at c. If it changes 

from decreasing to increasing at x c= , it has a local minimum at c. Taken together, local 

maximums and local minimums are referred to as local extrema. 

The first derivative test summarizes these facts and describes the process of finding local 

maximums and minimums. Specifically, suppose x c= is a critical point of f. Then: 

• if f  is positive to the left of c, and negative to the right of c, then f has a local maximum 

at c. 

• if f  is negative to the left of c, and positive to the right of c, then f has a local minimum 

at c. 

• if neither of the above conditions apply, f does not have a local extreme at c. 

Example 

Let 5 3( 3)f xx x= − . To find the local extrema of f, we begin by finding the derivative, setting it 

to 0, and solving for x: 

( )

4 2

4 2

2 2

( ) 5 9

9 0

5 9 0

3 3
0, ,

5 5

5

f

x

x x x

x

x x

x

 = −

− =

− =

= −

Since f  is never undefined, these three values are the only critical points of f. These critical 

points divide the real number line into four intervals: 
3

,
5

 
− − 
 

, 
3

,0
5

 
− 
 

, 
3

0,
5

 
 
 

, and 

3
,

5

 
 

 
. From each of these intervals we choose a point and use it to determine whether f  is 

positive or negative on the interval. Note that 
3

1.34
5
 . 
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x a=
2− 1− 1 2

f  f  f  f 

Test point 

( )f a ( 2) 44f  − = ( 1) 4f  − = − (1) 4f  = − (2) 44f  =

Conclusion is positive, 

so f is increasing 

is negative, 

so f is decreasing 

is negative, 

so f is decreasing 

is positive, 

so f is increasing 

Examining the table above, we see that f changes from increasing to decreasing at 

has a local maximum there. Also, f changes from decreasing to increasing at 

3

5
x = − , so f 

3

5
x = , so f has a 

local minimum there. Note that at x = 0, f has neither a maximum nor a minimum, since the 

derivative does not change sign from the left to the right of the point. 

Absolute Extrema 

If ( )f c M= is the largest value that f attains on some interval I containing c, then M is called 

the global maximum of f on I . Similarly, if ( )f c M= is the smallest value that f attains on 

some interval I containing c, then M is called the global minimum of f on I . 

There is no reason to expect that an arbitrary function has a global maximum or minimum value 

on a given interval. However, the Extreme Value Theorem guarantees that a function does have a 

global maximum and a global minimum on any closed interval on which it is continuous. On 

such an interval, both of the global extrema must occur at either a critical point or at an endpoint 

of the interval. 

The Candidate Test gives a procedure for finding these global extrema on a closed interval [a,b]: 

1. Check that f is continuous on [a,b]. 

2. Find the critical numbers of f between a and b. 

3. Check the value of f at each critical number, at a, and at b. 

4. The largest value found in the previous step is the global maximum, and the smallest 

value found is the global minimum. 

30 



Example 

Let us find the global extrema of 3 23 12 1( ) 2f x x x x= + − − on [–1,3] by following the steps 

given. 

First, note that f is a polynomial function, so it is continuous everywhere. The derivative of f is 
2( ) 6 6 12x x xf  = + − . This is always defined, so we need only set it to 0 and solve: 

2 6 12 0

6( 2)( 1) 0

2,1

6 x

x x

x

x + − =

+ − =

= −

x = –2 is not in [–1, 3], so we will only consider x = 1. Now we will check the value of f at 

this critical point and at the endpoints of the interval. 

x f(x) 
-1 3 23( 1) 12( 1) 1 12( 1) 2( 1)f + − −− −= =− −

  

 

 

   

 

 

  

 

 

 

 

      

  

 

 

  
  

  

  

 

 

      

   

 

 

  

 

     

   

   

      

     

 

 

 

    

 

 

 

 

3 23(3) 12(3) 1 44(3) 2(3)f = + − − =

3 23(1) 12(1) 1 8(1) 2(1)f = + − − = −1 

3 

The maximum value of f on [–1, 3] is 44, and it occurs at the endpoint x = 3. The minimum value 

is –8, and it occurs at the critical point x = 1. 

Concavity and Inflection Points 

The graph of 

f 

a function f is concave up when its derivative f 

f f 

is increasing, and it is concave 

down when is decreasing. Since the relationship of to is the same as the relationship 

of f  to f, we can determine on which intervals f  is increasing (or decreasing) by checking 

where f  is positive (or negative). Therefore, the criteria for f being concave up or down can be 

restated in terms of f  : f is concave up when f  is positive, and concave down when f  is 

negative. 

A point at which a function changes concavity (from up to down or down to up) is called a point 

of inflection. These can be found in a completely analogous manner to how local extrema are 

located using the first derivative test: find where the second derivative is 0 or undefined, and test 

points on either side to determine if concavity is changing. 
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Example 

The function in the previous example, 3 23 12 1( ) 2f x x x x= + − − , has second derivative 

( ) 12 6f x x = + . This is defined everywhere and is 0 only at 
1

2
x = − . To the left of 

1

2
− , say at 

, we have ( 1) 12( 1) 6 6f  − = − + = − , which is negative. Therefore, f is concave down to 1x = −

the left of 
1

2
− . To the right of 

1

2
− , say at 0x = , we have (0) 12(0) 6 6f  = + = , which is 

positive. This means that f is concave up to the right of 
1

2
− . Since f changes from concave down 

to concave up as it passes through 
1

2
− , f has a point of inflection at 

1

2
x = − . 

Second Derivative Test 

In addition to providing information about concavity and inflection points, the second derivative 

of a function can also help determine whether a critical point represents a relative maximum or 

minimum. Specifically, suppose f has a critical point at x c= . Then: 

• if ( ) 0f c 

( ) 0f c 

( ) 0f c =

, f has a local minimum at c. 

• if , f has a local maximum at c. 

• if , this test is inconclusive, and the first derivative test must be used. 
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Summary of Curve Sketching 

The following table summarizes the behavior of a graph at x c= , depending on the values of 

( )f c and . ( )f c

( ) 0f c  ( ) 0f c  ( ) 0f c =

( ) 0f c 

( ) 0f c 

Optimization 

The techniques given for finding local and global extrema can be applied in a wide variety of 

application problems, known as optimization problems. The details of the procedure and strategy 

vary by context, but there are some nearly universal steps for such situations: 

1. Draw a picture. 

2. Write a function for the quantity to be optimized (maximized or minimized). 

3. Rewrite the function from the previous step to be in terms of a single independent 

variable. This often involves using a secondary equation, called a constraint. 

4. Determine the domain of interest. 

5. Differentiate the function and find the relevant critical points. 

6. Use the first derivative test, second derivative test, or candidates test to determine which 

of the critical points or endpoints represent the optimal solution. 
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Example 

A manufacturer wants to construct a cylindrical container with a volume of 5 ft3. Using the steps 

noted previously, let’s find the dimensions of the container that will minimize the amount of 

material used. 

1. 

2. The quantity to be optimized is the surface area of the container. In terms of r and h, 

the surface area is given by the function 

3. As written, the function that gives the surface area depends on both rand h. However, 

since we know the volume of the cylinder is to be 5, and the volume formula is 

2V hr= , we have the constraint 
2 5r h = . Solving for h gives 

2

5
h

r
= . This can be 

2 22 r rhS  += . 

substituted into the function S: 
2

2

2

2

2

5
2

1

2

2

0
2

r rh

S r r
r

S r
r

S  

 




+

 
= +  



= +

=



Now S is written in terms of a single variable, r. 

4. Considering the physical situation, it is clear that the domain of interest is 0r  . A 

cylinder cannot exist with 0r  . 

5. Differentiating and setting to zero: 
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2

2

3

3

3

10
4

10
4 0

4 10 0

5

2

5

2

dS
r

dr r

r
r

r

r

r











= −

− =

− =

=

=

The derivative is undefined at 0r = , but that is irrelevant since it is not in the 

domain. 

6. The only critical point is 3
5

2
r


= , and the domain of r is ( )0, , so there are no 

endpoints. To justify that this critical point is indeed a minimum, we will use the 

second derivative test. 

. Evaluating at 3
5

2
r


= , we have 

2

32

3

20
4 12

5

2

d S

dr
 



= + =
 
 
 

. Since 
2

2 3

20
4

d S

dr r
= +

this is positive, the critical point is indeed a minimum, as desired. 

Free Response Tip 

As in the previous example, many applied optimization 

problems appear to have only one possible solution. Even when 

this is the case, make sure you include a justification for this 

solution being the desired optimal point. The Second Derivative 

Test is often the easiest way to do this but keep the First 

Derivative Test and the Candidates Test in mind as well. 

Implicitly Defined Curves 

When a curve is defined implicitly in an equation involving x and y, the applications of 

derivatives discussed in this section still generally apply. As with explicitly defined functions, 

critical points are determined by examining where 0
dy

dx
= or is undefined. However, the details 

of finding where this occurs are often more complicated since the expression for 
dy

dx
usually 
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involves both x and y. Second derivatives are often trickier to find as well. Two points are 

helpful: 

• The derivative
dy

dx
2

2

d dy d y

dx dx dx

 
= 

 
2

2

d y

dx

 of with respect to x is the

dy

dx

 second derivative of y with respect to x. In 

other words, . 

• When the expression for involves , it is usually possible to simplify by 

substituting a previously obtained expression for 
dy

dx
. 

Example 

Suppose 2 2 0x xy+ = . The derivative 
dy

dx
can be found by differentiating with respect to x and 

solving for 
dy

dx
: 

( ) ( )2 2 0

2 2 2 1 0

d d
x xy

dx dx

dy
x y x

dx

dy x y

dx x

+ =

+  +  =

− −
=

To find the second derivative, differentiate both sides of this result with respect to x: 

( ) ( )( )2

2 2

1 11

d dy d x y

dx dx dx x

dy
x

d y dx

dx

x y

x

− −   
=  



−


  


−− − −


 
 =

Now substituting 
x y

x

− −
for 

dy

dx
: 

( ) ( )( )2

2 2

2

2 2

2

2 2

11 1

2

x
d

y

x y
x y

x

x

y

d

x

x

d

dx

d

x

y x y

x

x yy

dx x

  
− 

=

− −
− − − −

+

 


=

− + +



+



=

+
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Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapter 4. 7th 

edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 4. 7th edition. Boston, MA: 

Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 4. 9th edition. 

Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single Variable. 

Chapter 4. 4th edition. New York, NY: Macmillan Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. Chapter 4. 

2nd edition. New York, NY: W.H. Freeman. 

Sample Analytical Applications of Differentiation Questions 

Do not use a calculator for the following two problems. 

Consider the function 
2( ) 2 1g x x x= − + + on the interval [–1,2]. Which of the following values 

of c, if any, satisfies the conclusion of the Mean Value Theorem on the interval [–1, 2]? 

A. 0 

B. 
1

2
C. 1 

D. No such c value exists 

The correct answer is B. Observe that g(x) is continuous on [–2,1] and differentiable on 

(–2,1). So, the Mean Value Theorem guarantees the existence of at least one value of c in (–2,1) 

for which 
(2) ( 1)

( )
2 ( 1)

g g
g c

− −
 =

− −
. Since for this function ( ) 2 2g x x = − + , this condition reduces to 

. 
1 ( 2)

2 2 1
2 ( 1)

c
− −

− + = =
− −

Solving for c yields c = 
1

2
. 
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You want to construct a rectangular box with a square base with volume 3200 cubic inches. The 

material to be used for the top and bottom costs $1.50 per square inch, and the material for the 

sides costs $2.75 per square inch. Which of the functions C(x) below would you optimize in 

order to determine the dimensions that would yield the least cost? 

A. 2 35,200
( ) 3C x x

x
= +

B. 2 12,800
( ) 2C x x

x
= +

C. 23 3200
( )

2
C x x

x
= +

D. 2 8800
( ) 1.5C x x

x
= +

The correct answer is A. Let x = width of the base = length of the base, and y = height of the 

box. 

2 3200x y = , so 2

3200

x
y =The volume is given by . The cost of construction is linked to the surface 

area formula for the box: 

Face of Box Area Cost 

Top 2 x 2$1.50x 

Bottom 2 x 2$1.50x 

Each Lateral Face xy $2.75xy 

2) + 4(2.75xy). Substituting 2

3200

x
y = to give the 

( )2

2 2 35,2003200( ) 3 11 3
xx

C x x x x= + = + . 

So, the total cost of the construction is 2(1.50x 

following cost function in x that should be minimized: 

You may use a graphing calculator to solve the following problem. 

The derivative of a function f(x) is given by ( )31
3

( ) cos 2lnf x x x = + − . At approximately what 

x-value in the interval ( )0, does f(x) have a local maximum value? 

A. 1.181 

B. 1.500 

C. 1.783 

D. 1.881 

The correct answer is C. Use the graphing calculator to graph ( )31
3

( ) cos 2lnf x x x = + − on a 

small interval, say [0,2]: 
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So, 1.783 is the approximate x-value at which f(x) has a local maximum because the graph of 

( )f x is positive to its left close by and positive to its right close by. 
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Integration and Accumulation of Change 

Around 17‒20% of the questions on your AP Calculus AB exam will cover Integration and 

Accumulation of Change. 

Riemann Sums and the Definite Integral 

When a function represents a rate of change, the area between the graph of the function and the 

x-axis represents the accumulation of the change. If the area is above the x-axis, the accumulated 

change is positive, whereas if the area is below the x-axis, the accumulated change is negative. 

More generally, the accumulation of a function on a closed interval [a, b], represented 

graphically by the area between a function and the x-axis, is called the definite integral of the 

function on that interval, and is denoted ( )
b

a
dxf x . 

For simple functions, the definite integral can often be evaluated geometrically. 

Example 

To evaluate 
4

1
( 3)x dx

−
− , draw a picture: 
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The area between the curve and the graph is divided into two triangles. The larger triangle has an 

area of 8. However, it is below the x-axis, so the accumulation is of negative values. Therefore, it 

contributes a value of 8− to the integral. The smaller triangle accumulates positive values and 

has an area of 
1

2
. Together, we have . 

4

1

1
( 3

15

2
) 8

2
x dx

−
− + = −− =

Definite integrals can be approximated using a variety of sums, each term of which represents 

the area of a rectangle over a small subinterval. To begin, consider a function ( )f x over the 

interval  ,a b

b a
x

n

−
 =

, and let n be the number of equally sized subintervals into which it is split. Then 

ix a i x= + is the width of each subinterval, and is the left endpoint of the ith 

subinterval. If a rectangle is constructed on each subinterval so that its height is equal to the 

value of )( if x , the sum of the areas will be ( ) ( ) ( )( )0 1 1n xf x f x f x −+ + +  . This sum is 

called a left Riemann sum. 

The notation 
1

n

i

i

a
=

 stands for the sum 
1 2 na a a+ + + . The left Riemann sum can be written 

using this notation as ( )
1

0

n

i

i

f x x
−

=

 . Other commonly used approximations are the right Riemann 

sum, and the midpoint Riemann sum, as shown below. 

Left Riemann Sum Right Riemann Sum Midpoint Riemann Sum 

( )
1

0

n

i

i

f x x
−

=

 ( )
1

n

i

i

f x x
=


1

1

0 2

n
i i

i

x
f x

x−
+

=

+ 
 

 


As n increases in size, each of these Riemann sums becomes a more accurate approximation of 

the definite integral. When the limit is taken as n → , any of these sums becomes equal to the 

definite integral. In other words, the integral of a function f over the integral  ,a b can be 

defined as 
1

0

( ) lim )(
n

b

i
a n

i

f x xdx f x
−

→
=

=  , provided this limit exists. 

In fact, although 
b a

x
n

−
 = is the most common way to divide intervals into subintervals, all of 

the above sums can be computed with potentially different x values for each subinterval. The 

limit of the sum is still equal to the definite integral. 

Another expression that can be used to approximate the definite integral is a trapezoidal sum, 

which represents the areas of trapezoids, rather than rectangles, constructed over the 

subintervals. The trapezoidal sum is ( )0 1 2 1) 2 ( ) 2 ( ) 2 ( ) ( )(
2

n n

x
f x f x f x f xf x −


+ + + + + . 
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Free Response Tip 

Free response questions often give values of a function in a table. 

A Riemann sum can be used to approximate its integral using the 

subintervals shown in the table, even if the intervals are not all 

the same length. The length of each subinterval is the distance 

between consecutive x-values, and the height of the rectangle on 

that subinterval is the y-value associated with either the left x (in 

case of a left Riemann sum) or the right x (in case of a right 

Riemann sum). In either case, your sum should have one fewer 

term than there are points given in the table. 

Properties of the Definite Integral 

The definite integral satisfies several properties: 

• ( )
b

a
b ac dx c= − , for any constant c 

• (( ) )
b b

a a
xc ff x dx dc x= 

•  ( ) ( ) ( ) ( )
b b b

a a a
f xxx g x dx f x d g x d =   

• ( ) 0
a

a
f x dx =

• ( ) ( )
b a

a b
f x dx f x dx= − 

• ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +  

Example 

Suppose 
7

1
( ) 9f x dx = and 

1

4

( ) 12f x dx = . Find ( )
4

7
( ) 3 dxf x − . 

First, we have . The latter integral is simply ( )3 4 7 9− = − . ( )
4 4 4

7 7 7
( )) 3 ( 3dx f x dx dxf x = −−  
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For the former: 

4 1 4

7 7 1

7

1

( ) ( ) ( )

( ) 12

9 12

3

f x dx f x dx f x dx

f x dx

= +

= − +

= − +

=

  



The answer is then ( )
4

7
( ) 3 3 ( 9) 12f x dx− = − − = . 

Accumulation Functions and the Fundamental Theorem of Calculus 

A function can be defined in terms of a definite integral: ( ) ( )
x

a
g x f t dt=  . The first part of the 

Fundamental Theorem of Calculus states that the derivative of this function at a given point is 

equal to the value of the function being accumulated. That is, ( )( ) ( ) ( )
x

a
g

d
x f t dt f x

dx
 = = . 

Since ( ) ( )
a x

x a
f t dt f t dt= −  , we also have . If the upper ( ) ( )( ) ( ( ))

a x

x a

d

x
f t dt d

d
f x

dx d
f t t= − = − 

limit of integration is a function of x, the chain rule can be applied along with the fundamental 

theorem. 

Example 

If 
2

2
( ) sin

x

f x t dt=  , then 2( ) sin( ) 2x x xf  =  . 

Antiderivatives and the Fundamental Theorem of Calculus 

If ( ) ( )g x f x = , g is said to be an antiderivative of f. Note that if C is any constant, then 

 ( ) ( ) 0 ( )
d

g x C g x f x
dx

+ =  + = , so that ( )g x C+ is also an antiderivative of f. In fact, all 

antiderivatives of a given function have this relationship with each other: they differ only by a 

constant. Every continuous function f has an antiderivative, since the function 

satisfies ( ) ( )g x f x = and is therefore an antiderivative of f. 

( ) ( )
x

a
g x f t dt= 

The second part of the Fundamental Theorem of Calculus states that if f is continuous on the 

interval [a,b], and F is any antiderivative of f on that interval, then ( ) ( ) ( )
b

a
f x dx F b F a= − . 

43 



  

  

 

 

  

 

  

 

 

 
 

  

  

 
 

  

  

  

  

  

  

 

 

  

 

   

 

 

  

 

 

 

 

 

 

 

This fact means that antiderivatives and integrals are very closely related. Because of this, an 

antiderivative is also called an indefinite integral, and is denoted ( ) ( )f x dx F x C= + , where F 

is any antiderivative. 

Basic Rules of Antiderivatives 

Since finding an antiderivative is the inverse process of finding a derivative, the rules for 

derivatives can be reversed to find antiderivatives. 

( )f x ò f (x)dx
nx 11

1

nx C
n

+

+
+

xe xe C+

1

x

ln x C+

sin x cos x C− +

cos x sin x C+
2sec x tan x C+

sec tanx x sec x C+

csc cotx x csc x C− +
2csc x cot x C− +

Integration by Substitution 

Substitution, also known as change of variables, is a technique for finding antiderivatives and is 

analogous to the chain rule for derivatives. It works by noting that 

( ( )) ( ) ( ( ))f g x g x dx f g x C  = + . The technique, then, requires recognizing the ( )g x and ( )g x

in the expression being integrated. 

If ( )u g x= , then ( )x dxdu g= , so the integral can be written ( ) ( )f u du f u C= + . 

Example 

Consider 
32 xx xe d . If we let 

3u x= , then 23du x dx= , or 2 1

3
ux dx d= . Since constants can be 

pulled out of integrals, the integral then becomes 
31 1 1

3 3 3

u u xe du e C e C= + = + . 

When using this technique with definite integrals, it is important to translate the limits of 

integration to be in terms of the new function u. 
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Example 

The integral 2

/2
cos sin d




   can be evaluated by substituting sinu = . Then cosd du  = . 

When 
2


 = , sin 1

2
u


= = , and when  = , sin 1u = = − . The integral becomes 

0
0

2 3

1
1

1 1 1

3 3 3
0u u ud = =

 
= − −

 
 . 

Other Integration Techniques 

If the numerator of a rational function has a degree that is at least as high as the degree of the 

denominator, long division is often helpful in integration. 

Example 

Consider 
3

1

x x
dx

x

+

− . Since the numerator has a higher degree than the denominator, long 

division can be applied to transform the integral. We get 
3

2 2
2

1 1

x x
x x

x x

+
= + + +

− −
, so that the 

answer is 3 21 1
2 2ln 1

3 2
x x x x C+ + + − + . 

Another technique that can be useful for some integrals is completing the square. 

Example 

Given 
2

1

6 10
dx

xx − + , note that completing the square in the denominator results in 

2

1

( 3) 1
dx

x − + . This should now be recognizable as the derivative of an arctan function, and the 

antiderivative is arctan( 3)x C− + . 
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Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapters 5-7. 

7th edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 5. 7th edition. Boston, MA: 

Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 5. 9th edition. 

Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 5. 4th edition. New York, NY: Macmillan 

Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. Chapters 

5 and 7. 2nd edition. New York, NY: W.H. Freeman. 

Practice Integration and Accumulation of Change Questions 

Do not use a calculator for the following two problems. 

Let . Compute ( )y  . 
4

( ) ln(3 )y t dt


 =  
A. 1 

B. 1
3

2ln(3 )+

C. 1
3

ln(3 )+

D. 1 2ln(3 )+

The correct answer is D. To compute ( )y  , you must first and foremost use the product rule, 

and then when you differentiate the integral term, use the Fundamental Theorem of Calculus: 

( ) ( )

( )
4 4

4

( ) ln(3 ) ln(3 )

ln(3 ) 1 ln(3 )

d d
d d

y t dt t dt

t dt

 

 



  

 

 =  + 

=  + 

 



Next, compute ( )y  in a similar fashion: 

( ) ( )4

1
3

( ) ln(3 ) ln(3 ) ln(3 )

3 ln(3 ) 1 ln(3 )

1 2ln(3 )

d d d
d d d

y t dt


  



    

  



 =  +  +

=   +  +

= +
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Compute 
( )2

2

ln t
x

dt
t

 . 

A. ( )( )
2

1
2 2

ln x

B. ( )( )
2

2
ln x

C. ( )( )
2 21 1

2 2 2
ln x e−

D. 
21

2
2x −

The correct answer is A. Use the following u-substitution: 

( )

( )

2

1 1
2

2

2

ln

1

2 ln1 0

ln

t

tt

x

u

du dt dt

t u

t x u

=

=  =

=  = =

=  =

So, the integral is now evaluated as follows: 

( ) ( ) ( )
( )( )22

ln 2ln2 21 1
2 2 22 0 0

ln
ln

xx
t

x xdt udu u
t

= = = 

You may use a graphing calculator to solve the following problem. 

Consider the piecewise–defined function 

( )

3 29 27 19, 3
( )

ln , 3 0

x x x x
f x

x x

 + + +  −
= 

−  

Which of the following expressions gives the area of the region bounded by the graph of f(x), the 

x-axis, 4x = − , and 1
2

x = − ? 

A. 
1

21 3

3 4 1
( ) ( ) ( )f x dx f x dx f x dx

− − −

− − −
 − +
   

B. 
1

2 3

3 4
( ) ( )f x dx f x dx

− −

− −
− 

C. 
1

2

4
( )f x dx

−

−

D. 
1

2

4
( )f x dx

−

−
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The correct answer is A. First, graph the region using the graphing calculator: 

Use interval additivity to break the region into three disjoint pieces on the subintervals [–4,–3], 
1 1 

[–3,–1], and [–1, − ]. Since the regions on [–4, –3] and [–1, − ] are below the x-axis, we 
2 2 

integrate –f(x) on them, while we integrate f(x) on [–3,–1] since the graph is above the x-axis 

there. Summing these integrals yields the area of the region: 

1 1
2 23 1 1 3

4 3 1 3 4 1
( ) ( ) ( ) ( ) ( ) ( )f x dx f x dx f x dx f x dx f x dx f x dx

− − − − − −

− − − − − −
 − + + − = − +
       , 

where linearity was used to get the right-side of the inequality. 

Differential Equations 

Around 6‒12% of the questions on your exam will cover Differential Equations. 

Introduction to Differential Equations 

A differential equation is an equation that involves a function and one or more of its derivatives. 

The solution to a differential equation is a function that satisfies the equation 

Example 

Consider the differential 
3 1xy e= −

3 33 1 3 3( 1) 3 0x xy y e e − − = − − − =

equation 3 3 0y y− − =
33 xy e =

. One solution to this equation 

y

is given by 

. To check this, first find , and now substitute and y into the differential 

equation: . 

A differential equation may have infinitely many solutions parameterized by a constant; this is 

called the general solution to the equation. If additional information is given, the constant can be 
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determined. This additional information comes in the form of an initial condition; that is, a value 

0 0)(f x y= that must be satisfied by the solution. 

Example 

Consider the differential equation y y = − with initial condition 7
2

y
 

= − 
 

. Any function of 

the form siny C x= is a general solution to this equation since ( )
2

2
sin sin .

d
C x C x

dx
= − Using 

the initial condition given, we have sin
2

7 C


− = , so we can solve to find 7C = − . The particular 

solution to the equation is 7siny x= − . 

Slope Fields 

A slope field is a graphical representation of a differential equation. At each of finitely many 

points in some section of a plane, a short line is drawn representing the slope of a function. This 

represents a differential equation whose solution is the function whose slopes are being drawn. 

Example 

The slope field shown above represents the differential equation 2
dy

x
dx

= . The solutions to this 

equation are the functions 2y Cx= + , as can be seen in the shapes formed by the slopes shown. 

Separation of Variables 

A certain class of differential equations, called separable equations, can be solved using 

antidifferentiation. The technique requires separating the variables so that each is represented 

only on a single side of the equation. Integrating both sides of the equation then produces a 
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general solution. If an initial condition is provided, it can be used to find a particular solution. 

When integrating, it is only necessary to include a constant C on one side of the equation. 

Example 

Consider the differential equation 26
dy

y t
dt

= with initial condition y(1) = 1. To solve this, we 

begin by separating the variables: 
2

1
6dy t dt

y
= . Integrating both sides, we have: 

2

2

1 1
6 3t t Ct

y y
dy d  == +−  . 

This gives a general solution, although it is implicitly defined. We can solve for y to make it 

explicit, but it is often advisable to first use the initial condition to solve for C. In this case, 

substituting the initial values results in C = –4. Using this value and solving for y, we can obtain 

the explicit solution: 

2

2

2

1
3

1

3 4

1

3 4

4

t

y

t
y

t

y

=

−

−
=

− −

−

−

=

Exponential Models 

Many applications of differential equations involve an exponential growth or decay model. This 

model occurs in any situation in which the rate of change of a quantity is proportional to the 

quantity. As an equation, this is represented by 
dy

ky
dt

=

0

kty y e=

. This equation is 

0y

easily solved using 

separation of variables, and the general solution is , where is the value of y when t = 

0. 

Example 

The rate of growth in a bacteria culture is proportional to the number of bacteria present. A 

certain culture starts out with 200 bacteria, and after 2 hours there are 1000. Let us find the 

following: 

a) The number of bacteria present after 5 hours 

b) The time it will take for the culture to reach 7000 bacteria 
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To begin, note that since this follows exponential growth with a starting value of 200, the 

population is modeled by the equation 200 kty e= . To solve for k, use the fact that after 2 hours 

there are 1000 bacteria: 
2

2

2

1

l

00

5

n5

0 200 t

t

e

e

t

=

=

=

We can now rewrite the model as 
ln5

2200
t

y e= . The population after 5 hours is 
5ln5

2 11180200e  . 

For the second part of the problem, substitute 7000y = in the model we found. 
ln 5

2

ln 5

2

7

2

n
ln

000 200

35

l 3

n

2
5

2

ln 5

5

l 35

4.4

t

t

e

t

t

t

e

=



=

=

=

It will take approximately 4.42 hours for the population to reach 7,000. 

Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapter 

11. 7th edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 6. 7th edition. Boston, 

MA: Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 9. 9th 

edition. Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 9. 4th edition. New York, NY: 

Macmillan Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

Chapter 16. 2nd edition. New York, NY: W.H. Freeman. 
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Practice Differential Equations Questions 

Do not use a calculator for the following two problems. 

Which of the following is a solution of the first–order differential equation ( ) 3 ( )y x y x = subject 

to ( )1
9

1y = − ? 

A. 
1 1
3 27( )

x
y x e

−
= −

B. 
1
3

3
( )

x
y x e

−
= −

C. 
33( ) xy x e e= −

D. 
3( ) xy x e= −

The correct answer is B. Verify that the function is a solution by plugging it into the differential 

equation and showing that it passes through the given point: 

1
9

1 1
3 3

1
3

3 3

3 ) 01
9

(

( ) ( ) 3 3 ( )

( ) 1

x x
y x e y x e y x

y e e

− −

−

= −  = − = −

= − = − = −

The general solution of ( ) ( )y x k y x = is ( ) k xy x Ce= , not 
1

( ) k
x

y x Ce= . 

What is the general solution of the first-order differential equation 3 2x dy
e y

dx
= ? (Note: In all 

choices, C represents an arbitrary real number.) 

A. 
3

31

x

x

e
y

Ce
=

+

B. 
3

3

3

1

x

x

e
y

Ce
=

+

C. 
3 3xy e C= +

D. 33 xy e C= +

The correct answer is B. This choice is the correct answer. Use separation of variables: 
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3 2

3 2

2 3

2 3

1 31
3

31 1
3

31
3

1

x

x

x

x

x

x

y

x

dy
e y

dx

e dy y dx

y dy e dx

y dy e dx

y e C

e C

y
e C

− −

− −

− −

−

−

=

=

=

=

− = − +

= +

=
+

 

Now, simplify as follows, noting that since C is an arbitrary real number, it follows that 3C is 

also an arbitrary real number and so, it is fine to simply use C in place of 3C. 

3 3

3 3 3 3

3

3 31 1 11
3 3 3 3 3

1 1 1 1 3

1
x x

x x x x

x

x xCe Ce

e e e e

e
y

e C C Ce− +
= = = = =

+ + ++

You may use a graphing calculator to solve the following problem. 

The half–life of a certain radioactive isotope is 22.1 years. The initial amount of the mass present 

is 130 mg. Determine the approximate amount of time it takes in order for only 45 mg of the 

substance to remain. 

A. 14.4 years 

B. 33.8 years 

C. 44.2 years 

D. 46.9 years 

The correct answer is B. A differential equation of the form 

(0) 130

dy

dt
ky

y

 =


=

where the constant k must be determined. The solution of this initial-value problem is 

( ) 130 k ty t e= . 

Use the fact that y(22.1) = 65 (half–life) to find k: 

53 



  

  

 

 

    

  

 

 
 

 

 

 

 

 

 

 

  

 

  

 

    

  

 

 

 

 

 

 

( )

( )

22.1 22.11
2

1
2

1 1
22.1 2

65 130

ln 22.1

ln

k ke e

k

k

=  =

 =

 =

Therefore, the solution is 
( )( )1 1

22.1 2
ln

( ) 130
t

y t e= ; this represents the amount of the substance 

(measured in mg) present at time t. We must determine the value of 0t t= for which ( )0 45y t = . 

Use the graphing calculator to obtain the approximate solution graphically: 

So, the approximate time it takes in order for only 45 mg of the substance to remain is 33.8 

years. 

Applications of Integration 

Finally, around 10‒15% of exam questions will cover the Applications of Integration. 

Average Value 

If f is continuous on the interval  ,a b , then the average value of f on that interval is 

. If f is nonnegative on the interval, the average value of the function has a (
1

)
b

a
f x dx

b a− 
simple graphical interpretation: it is the height a rectangle over the interval would have to be to 

have the same area as exists between the x-axis and the function. 
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Position, Velocity, and Acceleration 

When a particle is moving along a straight line, its motion can be modeled using derivatives, as 

discussed earlier. The theory and techniques of integration now allow us to extend this 

description with the following two points: 

• The displacement of the particle over the time interval  1 2,t t is given by 
2

1

( )
t

t
v t dt , 

where ( )v t is the velocity of the particle. 

• The total distance traveled by the particle over the time interval  1 2,t t is 
2

1

( )
t

t
v t dt . 

Recall that ( )v t is the speed of the particle at time t. 

Accumulation Functions in Context 

The net change of a quantity over an interval can be found by integrating the rate of change. This 

is an important fact that can be used in a variety of applications. 

Example 

A tank of water contains 53 gallons at 8:00 AM. Between 8:00 AM and 12:00 PM, water leaks 

from the tank at a rate of ( ) 3 sinL t t= , where t is the number of hours since 8:00 AM, and L is 

measured in gallons per hour. How much water is remaining in the tank at 12:00 PM? 

To solve this, we need to consider two quantities: the amount of water that the tank has at 8:00 

AM, and the total amount of water that leaks from the tank between the hours of 8:00 AM and 

12:00 PM. The first quantity is given as 53. The second quantity is the accumulation of the rate of 

leaking over the four hours. Therefore, the amount of water remaining in the tank at 12:00 PM is 
4

0
65 i 43 3 s n t dt −  gallons. 

Free Response Tip 

Pay attention to units in free response questions, as they are 

often required to be correct to receive full credit. Remember 

that the units 
dy

dx

( )
b

a
f x dx

of are the units of y over the units of x, and 

the units of are the units of y times the units of x. 

When the units of y are a rate of change over time, and the 

units of x represent time, the units of the integral end up being 

equivalent to whatever quantity is changing. 

55 



  

  

 

     

 

 

 

 

 

 

    

 

 

  

  

 

 

   

 

 

 

 

 

 

Area Between Curves 

If f(x) ≥ g(x) on the interval [a,b], then the area between f on g between a and b is 

 ( ) ( )
b

a
dxf x g x− . If the two functions intersect on an interval, the integral needs to be split into 

multiple subintervals, so that along each section the functions can be subtracted in the proper 

order. 

Example 

Let us find the area in the first quadrant bound by the graphs of 
2

(
1

)f x x= , 2( )g x x= , and the 

line 1x = . This is represented in the following graph. 

The graphs cross at 
1

2
x =

1/2
2

0

1 1

2 48
x x dx

 
− = 

 


, so we will need to evaluate the two regions separately.

1
2

1/2

1 5

2 48
x x dx

 
=

 
− 

 The first 

region has area , and the second region has area . 

The total area is 
1 5 1

48 48 8
+ = . 

When curves are given as functions of y instead of x, the area between them can be found using 

the same technique. Instead of the integrand, begin the function on top minus the function on 

bottom, it is the function on the right minus the function on the left. 
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Volumes with Cross Sections 

When a solid can be described in terms of its base and cross-sectional shapes, the volume of the 

solid can be computed by integrating the area of the cross sections along an appropriate interval. 

If the cross sections described are perpendicular to the x-axis, the volume is given by 

( )
b

a
V A x dx=  , where ( )A x is the area of the cross section in terms of x. If the cross sections are 

perpendicular to the y-axis, the integral is with respect to y: ( )
b

a
V dyA y=  . 

Shapes commonly used as cross sections include squares, rectangles, right triangles, equilateral 

triangles, and semicircles. 

Example 

The base of a solid is the region in the first quadrant of the xy-plane bounded by y x= and the 

vertical line x = 4, shown as follows. Cross sections of the solid taken perpendicular to the y-axis 

are semicircles with diameter lying in the region given. 

To find the volume of this solid, we need to first find a formula for the area of each cross section 

and appropriate limits of integration. 

Since the cross sections are perpendicular to the y-axis, the diameter of each semicircle is the 

horizontal distance y x=
24 y−

( )2 21 1
4 2

2 2
r y y= − = −

 between and 2x = . Solving the square root function for x, we see 

that this distance is . The radius of the semicircle, which we need to calculate its area, is 

half of this, or . The area of the semicircle is 

2

2 2 2 41 1 1 1
( ) 2 2

2 2 2 8
A y r y y y  

   
= − −   

  
= =


+ . 
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The limits of integration are the range of y-values that span the region. The lower boundary is y = 

0, and the upper boundary is y = 2. Therefore, the volume of the region is 
2

2 4

0

1 32
2

8 15
dV y y y




 
− = +

 
=  . 

Free Response Tip 

Free response volume questions often appear on the section 

that does not allow use of a calculator. In these cases, the 

questions are usually phrased as follows: “set up, but do not 

evaluate, an integral that represents…”. This means that you 
should NOT make any attempt at finding a numerical 

answer; rather, just leave the integral itself as your answer. 

Solids of Revolution 

When a solid has circular or washer (ring-shaped) cross sections perpendicular to a vertical or 

horizontal line, it can be described as being obtained by revolving a region around that vertical or 

horizontal line. In this case, the volume can be calculated by a standard formula: 

If the axis of revolution is horizontal, and the cross sections are circles, the volume is• 
2

b

a
r dxV =  , where r is the radius in terms of x. 

• If the axis of revolution is horizontal, and the cross sections are washers, the volume is 

( )2 2
b

a
R r dxV  −=  , where R is the radius of the outer circle, and r is the radius of the 

inner circle. 

• If the axis of revolution is vertical, and the cross sections are circles, the volume is 

2
b

a
r dyV =  , where r is the radius in terms of y. 

• If the axis of revolution is vertical, and the cross sections are washers, the volume is 

( )2 2
b

a
R r dyV  −=  , where R is the radius of the outer circle, and r is the radius of the 

inner circle. 
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Free Response Tip 

When volume questions do allow use of a 

calculator, you must show the integral you are 

evaluating in addition to the answer you obtained 

on your calculator. The numerical answer itself will 

not be sufficient to obtain full credit. 

Example 

The region bound by the graphs of 2y x= and y x= is revolved around the line 2y = . The 

cross sections perpendicular to the x-axis are washers, with 22R x= − , and 2r x= − , shown as 

follows. 

The volume of the solid is ( ) ( )
21 2

2

0

31
2 2

30
V x xx d


  = =

  
− − − . 
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Suggested Reading 

• Hughes-Hallett et al. Calculus: Single Variable. Chapter 

8. 7th edition. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. Chapter 7. 7th edition. 

Boston, MA: Cengage Learning. 

• Stewart et al. Single Variable Calculus. Chapter 6. 9th 

edition. Boston, MA: Cengage Learning. 

• Rogwaski et al. Calculus: Early Transcendentals Single 

Variable. Chapter 6. 4th edition. New York, NY: 

Macmillan Learning. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

Chapter 6. 2nd edition. New York, NY: W.H. Freeman. 

Sample Applications of Integration Questions 

Do not use a calculator for the following two problems. 

Suppose a chemical leaks from a holding tank into a reservoir at a rate of R(t) gallons per minute 

at time t. Which of the following expressions equals the number of gallons of chemical that have 

leaked from the tank during the first three hours? 
180

0
( )R t dt

180

0
( )R t dt

3

0
( )R t dt

D. R(180) – R(0) 

A. 

B. 

C. 

The correct answer is B. R(t) is already the rate at which the chemical leaks from the tank and 

its units are gallons per minute. Since time is measured in minutes, the “first three hours” 
corresponds to the time interval [0, 180] minutes; this is the interval of integration. So, by the net 

change theorem, the number of gallons of chemical that have leaked from the tank during the 

first three hours is given by 
180

0
( )R t dt . 

Suppose the graph of the function m(x) on the interval [–5,–1] is as follows: 
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(Assume the curve forms a semi–circle.) Compute 
1

5
( )m x dx

−

− . 

A. 

B. 

C. 

D. 

8 2− −

2−

2
8 2+

The correct answer is A. Divide the region bounded by the curve y = m(x) and the vertical lines 

x = –5 and x = –1 into two pieces: a rectangle and a semicircle of radius 2. The area of the 

rectangle is 4(2) = 8 and the area of the semicircle is 21
2

(2) 2  =

1

5
( )m x dx

−

−

. Since both regions are below 

the x-axis, they contribute a negative amount to the integral . Hence, 

1

5
( ) 8 2m x dx 

−

−
= − − . 

You may use a graphing calculator to solve the following problem. 

Consider the function 
sin( ) 1xg x e= − on the interval  0, 2 . What is the smallest positive 

approximate value of c in this interval for which g(c) equals the average of g(x) on  0, 2 ? 

A. 0.238 

B. 1.385 

C. 1.571 

D. 2.903 

The correct answer is A. By definition, the average value of 
sin( ) 1xg x e= − on  0, 2 is given 

by ( )
2 sin1

2 0
1xe dx




− . Using the graphing calculator, we see that this quantity is approximately 
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equal to 0.26607. Now, we must find the points of intersection of 
sin( ) 1xg x e= − and the 

horizontal line y = 0.26607 in the interval  0, 2 : 

Of the two such points of intersection, 0.238 is the smallest value of x. This is the value we seek. 
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