
                      

 

 
 
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AP Calculus BC: 

Study Guide 

AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this 

product. 



  

  
 

          

          

 

      

 

     

      

        

      

     

      

       

     

      

 

       

 

           

         

 

 

   
 

         

 

 

  

 

                    

                

         

 

    

 

        

      

 

      

 

Key Exam Details 

The AP® Calculus BC exam is a 3-hour 15-minute, end-of-course test comprised of 45 multiple-

choice questions (50% of the exam) and 6 free-response questions (50% of the exam). 

The exam covers the following course content categories: 

• Limits and Continuity: 4–7% of test questions 

• Differentiation: Definition and Fundamental Properties: 4–7% of test questions 

• Differentiation: Composite, Implicit, and Inverse Functions 4–7% of test questions 

• Contextual Applications of Differentiation: 6–9% of test questions 

• Analytical Applications of Differentiation: 8–11% of test questions 

• Integration and Accumulation of Change: 17–20% of test questions 

• Differential Equations: 6–9% of test questions 

• Applications of Integration: 6–9% of test questions 

• Parametric Equations, Polar Coordinates, and Vector-Valued Functions: 11–12% of test 

questions 

• Infinite Sequences and Series: 17–18% of test questions 

This guide offers an overview of the main tested subjects, along with sample AP multiple-choice 

questions that look like the questions you’ll see on test day. 

Limits and Continuity 

About 4–7% of the questions on your exam will cover Limits and Continuity. 

Limits 

The limit of a function f as x approaches c is L if the value of f can be made arbitrarily close to L 

x sufficiently close to c (but not equal to c). If such a value exists, this is denoted 

. If no such value exists, we say that the limit does not exist, abbreviated DNE. 

Limits can be found using tables, graphs, and algebra. 

Important algebraic techniques for finding limits include factoring and rationalizing radical 

expressions. Other helpful tools are given by the following properties. 

, and a is any real number. 

by taking 

lim ( )
x c

f x L
→

=

Suppose lim ( )
x c

f x L
→

= , lim ( )
x c

g x M
→

= , lim ( )
x L

h x N
→

=

1 



  

 

 

  

  

  

    

  

 

        

          

  

 

         

 

  

 

               

                 

            

  

 

            

         

    

    

       

 

 

 

 

 

 

 

 

 

 

 

Then: 

•  )l )im ( (
x c

f x g x L M
→

+ = +

•  )l )im ( (
x c

f x g x L M
→

− = −

•  lim ( )
x c

aLaf x
→

=

• 
( )

lim
( )x c

f x L

g x M→
= , as long as 0M 

• ( )lim ( )
x c

Nh f x
→

=

For many common functions, evaluating limits requires nothing more than evaluating the 

function at the point c (assuming the function is defined at the point). These include polynomial, 

rational, exponential, logarithmic, and trigonometric functions. 

Two special limits that are important in calculus are 
0

sin
lim 1
x

x

x→
= and 

0

1 cos
lim 0
x

x

x→

−
= . 

One-Sided Limits 

Sometimes we are interested in the value that a function f approaches as x approaches c from 

only a single direction. If the values of f get arbitrarily close to L as x approaches c while taking 

on values greater than c, we say lim ( )
x c

f x L
+→

= . Similarly, if x is taking on values less than c, we 

write . lim ( )
x c

f x L
−→

=

We can now characterize limits by saying that lim ( )
x c

f x
→

exists if and only if both lim ( )
x c

f x
+→

and 

lim ( )
x c

f x
−→

exist and have the same value. A limit, then, can fail to exist in a few ways: 

• does not exist lim ( )
x c

f x
+→

• does not exist lim ( )
x c

f x
−→

• Both of the one-sided limits exist, but have different values 
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Example 

The function shown has the following limits: 

• 
2

1l ( )im
x

f x
−→−

= −

• 
2

1li ( )m
x

f x
+→−

=

• 
2

)li (m
x

f x
→−

DNE 

• 
1

4l ( )im
x

f x
−→

=

• 
1

4l ( )im
x

f x
+→

=

• 
1

4l ( )im
x

f x
→

=

Note that f(1) = 3, but this is irrelevant to the value of the limit. 

Infinite Limits, Limits at Infinity, and Asymptotes 

When a function has a vertical asymptote at x = c, the behavior of the function can be described 

using infinite limits. If the function values increase as they approach the asymptote, we say the 

limit is ∞, whereas if the values decrease as they approach the asymptote, the limit is -∞. It is 

important to realize that these 


limits do not exist in the same sense that we described earlier; 

rather, saying that a limit is is simply a convenient way to describe the behavior of the 

function approaching the point. 

We can also extend limits by considering how the function behaves as x → . If such a limit 

exists, it means that the function 

( )lim
x

f x L
→

=

approaches a horizontal line as x increases 

y L=

or decreases without 

bound. In other words, if , then f has a horizontal asymptote . It is possible for 

a function to have two horizontal asymptotes since it can have different limits as x → and 
x →− . 
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The Squeeze Theorem 

The Squeeze Theorem states that if the graph of a function lies between the graphs of two other 

functions, and if the two other functions share a limit at a certain point, then the function in 

between also shares that same limit. More formally, if )( () ( )g x xf hx   for all x in some 

interval containing c, and if lim ( ) lim ( )
x c x c

f x h x L
→ →

= = , then lim ( )
x c

g x L
→

= as well. 

Example 

The sine function satisfies sin 11 x − for all real numbers x, so 11
1

sin
x

 
  

 
− is also true 

for all real numbers x. Multiplying this inequality by 
2x , we obtain 

2 2 21
sinx x

x
x−

 
  

 
. Now 

the functions on the left and right of the inequality, 
2x and 

2x− , both have limits of 0 as 0x → . 

Therefore, we can conclude that 
2

0

1
lim sin 0
x

x
x→

 
= 

 
also. 

Continuity 

The function f is said to be continuous at the point x c= if it meets the following criteria: 

1. ( )f c exists 

2. )lim (
x c

f x
→

exists 

3. ( ) ( )lim
x c

f x f c
→

=

In other words, the function must have a limit at c, and the limit must be the actual value of the 

function. 

Each of the above criteria can fail, resulting in a discontinuity at x = c. Consider the following 

three graphs: 
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In graph A, the function is not defined at c. In graph B, the function is defined at c, but the limit 

as x c→ does not exist due to the one-sided limits being different. In graph C, the function is 

defined at c and the limit as x c→ exists, but they are not equal to each other. 

The discontinuity in graph B is referred to as a jump discontinuity, since it is caused by the graph 

jumping when it reaches x = c. In contrast to this is the situation in graph C, where the 

discontinuity could be fixed by moving a single point; it occurs whenever the second condition 

above is satisfied and is called a removable discontinuity. If lim ( )
x c

f x
→

exists, but f has a 

discontinuity at x = c because it fails one of the other conditions, the discontinuity can be 

removed by defining or redefining f(c) to be equal to the limit at that point. 

A function is continuous on an interval if it is continuous at every point in the interval. The 

following categories of functions are continuous at every point in their respective domains: 

• Polynomial 

• Rational 

• Power 

• Exponential 

• Logarithmic 

• Trigonometric 

If f is a piecewise-defined function with continuous component functions, then checking for 

continuity consists of checking whether it is continuous at its boundary points. Continuity at a 

boundary point requires that the functions on both sides of the point give the same result when 

evaluated at the point. 

Intermediate Value Theorem 

The Intermediate Value Theorem applies to continuous functions on an interval  ,a b . If d is any 

value between f(a) and f(b), then there must be at least one number c between a and b such that 

f(c) = d. 

Example 

Consider 2( ) xf x e −= , which is continuous everywhere. We have 
0 2 1(0)f e= − = − , and f(1) = 

e – 2, which is certainly positive. If we take 0d = in the statement of the theorem, then d is 

between f(0) and f(1). Therefore, the Intermediate 

( ) 0f c =
Value Theorem guarantees 

ln 2c =

at least one value c 

between 0 and 1 with the property that . This value, of course, is . 
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Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 1. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 2. Boston, 

MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 2. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 2. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapter 1. New York, NY: W.H. Freeman. 

Sample Limits and Continuity Questions 

Consider the following graphs of f and g: 

Compute  
2

lim 3 ( ) ( )
x

f x g x
+→

− , provided the limit exists. 

A. Does not exist 

B. 4 

C. 6 

D. 7 

Explanation: 

The correct answer is D. First, use linearity to write: 

 
2 2 2

lim 3 ( ) ( ) 3 lim ( ) lim ( )
x x x

f x g x f x g x
+ + +→ → →

− = − . 
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. Substituting these values above yields 

. 

Now, observe that 
2 2

lim ( ) 3 and lim ( ) 2
x x

f x g x
+ +→ →

= =

 
2 2 2

lim 3 ( ) ( ) 3 lim ( ) lim ( ) 3(3) 2 7
x x x

f x g x f x g x
+ + +→ → →

− = − = − =

Suppose that ( )3
( ) 2cosf x x= and the graph of g(x) is given by 

Compute 
3

lim ( ) ( )
x

f x g x
→ −

 , provided it exists. 

A. –6 

B. 4 

C. 6 

D. Does not exist 

Explanation: 

The correct answer is C. Use the fact that the limit of a product is the product of the limits, 

provided they both exist independently, to compute: 

( ) ( )
( )( ) ( )

( )( ) ( )

( )( )

3 3 3

3

lim ( ) ( ) lim ( ) lim ( )

2cos ( 3) 3

2cos 3

2 3

6

x x x
f x g x f x g x





→ − → − → −
 = 

=  −  −

= −  −

= − −

=

Which of the following limits does not exist? 
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A. 

B. 

C. 

D. 

sin
lim
x

x

x→

1

| 1|
lim

1x

x

x→

−

−
2

3

0
lim

x
x

+→

lim sec
x

x
→ −

Explanation: 

The correct answer is B. Recall that 

So, 

1, 1
| 1|

1 , 1

x x
x

x x

− 
− = 

− 

1, 1| 1|

1, 11

xx

xx

−
= 

− − 

Hence, 
1

| 1|
lim 1

1x

x

x+→

−
= −

−
while 

1

| 1|
lim 1

1x

x

x−→

−
=

−
. Since these values are different, it follows that 

there is a jump at x = 1 and so, 
1

| 1|
lim

1x

x

x→

−

−
does not exist. 
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Differentiation: Definition and 

Fundamental Properties 

About 4–7% of the questions on your AP exam will cover Differentiation: Definition and 

Fundamental Properties. 

Definition of the Derivative 

The average rate of change of a function 

x a h= +

f over the interval from x a= x a h= +

( ) ( )f x f a

x a

−

−

to is 

( ) ( )f a h f a

h

+ −
. Alternatively, if , this can be written . When h is made 

smaller, so that it approaches 0, the limit that results is called the instantaneous rate of change of 

f at x a=

0

( ) ( )
( ) lim

h

f a h f a
a

h
f

→

+ −
 =

, or the derivative of f at x a= , and is denoted ( )f a

( ) ( )
( ) lim

x a

f x f a
a

x a
f

→

−
 =

−

( )f a

. 

That is, , or equivalently, . 

If this limit exists, f is said to be differentiable at a. Graphically, represents the slope of the 

line tangent ( )f x

)( )( ()y f aa af x −− =

to the graph of at the point where x a= . Therefore, the line tangent to f(x) at x 

= a is . 

If the function ( )y f x= is differentiable at all points in some interval, we can define a new 

function on that interval by finding the derivative 
dy

dx

x a=

at every point. This

0

( ) ( )
( ) lim

h

f x h f x
x

h
f

→

+ −
 =

( )f a
x a

dy

dx =

 new function, called the 

derivative of f, can be denoted ( )f x , y , or , and is defined by . 

The value of the derivative at a particular point can then be denoted or 

If f is differentiable at x a= , then it also must be continuous at x a= . In other words, if a 

function fails to be continuous at a point, it cannot possibly be differentiable at that point. 

Another way that differentiability can fail is via the presence of sharp turns or cusps in a graph. 

Free Response Tip 

When specific function values are given, the 

derivative at a point can be approximated by 

finding the average rate of change between 

surrounding points. For example, if you are 

given values of a function at x = 3, 4, and 5, then 

the derivative at 4 can be approximated by the 

average rate of change between 3 and 5. 

9 



Basic Derivatives and Rules 

There are several rules that can be used to find derivatives. Assume f and g are differentiable 

functions, and c is a real number. 

• The constant rule: 0
d

c
dx

=

• The power rule: 1n nd
x

x
nx

d

−= , for any real number n 

 ( ) ( ) ( ) ( )
d

f x g x f x g x
dx

+ =  + 

 ( ) ( ) ( ) ( )
d

f x g x f x g x
dx

− =  − 

 ( ) ( )
d

cf x cf x
dx

= 

 ( ) ( ) ( ) ( ) ( ) ( )
d

f x g x f x g x f x g x
dx

=  + 

 
2

( ) ( ) ( ) ( ) ( )

( ) ( )

d f x x g x f x g x

dx g x g x

f   − 
= 

 

• The sum rule: 

• The difference rule: 

• The constant multiple rule: 

• The product rule: 

• The quotient rule: 

( )
d

cx c
dx

= , and 1
d

x
dx

= .As special cases of the power rule, note that 

In addition to these rules, the derivatives of some common functions are as follows: 

f(x) ( )f x
xe xe

ln x 1

x

sin x cos x

cos x sin x−
tan x 2sec x
sec x sec tanx x
csc x csc cotx x−
cot x 2csc x−
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Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapters 2 and 3. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 3. Boston, 

MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapters 2 and 3. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 3. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

2nd Edition. Chapter 2. New York, NY: W.H. Freeman. 

Sample Differentiation: Definitionand Fundamental Properties 

Questions 

Boyle’s laws states that if a gas is compressed by constant temperature, the product of the 
volume and pressure remains constant; that is, VP = K, where K is a constant. Which of the 

following equals the instantaneous rate of change of pressure with respect to volume? 

A. –K 

B. 0 

C. 
2KV−

D. 
2

K

V
−

Explanation: 

The correct answer is D. Observe that since VP = K, it follows that 
1P KV −= . Differentiating 

both sides with respect to V yields . 
2

2

dP K
KV

dV V

−= − = −

11 



  

              

          

       

 

  

   

   

  

 

 

           

     

  

 

          

         

     

  

 

            

        

 

 

 

 

 

          

      

 

 

 

 

 

 

 

An object moves along the curve y = 
1

x
, starting at x = 

1

10
. As it passes through the point (1,1) its 

x-coordinate increases at a rate of 2 inches per second. How fast is the distance between the 

object and the origin changing at this instance in time? 

A. 0 inches per second 

B. 4 2

2

inches per second 

C. inches per second 

D. –2 inches per second 

Explanation: 

The correct answer is A. The position of a point on this curve is of the form ( ) ( )1, ,
x

x y x= . So, 

the distance D between it and the origin is 

( ) ( ) ( ) ( )
22 2 2 2 210 0 0 0

x
D x y x x x−= − + − = − + − = + . 

While we could differentiate both sides with respect to t directly, the 
2 2 2D x x−= +

presence of the radical 

makes this inconvenient. So, we square both sides first to get and now differentiate 

both sides with respect to t. Doing so yields: 

3

3

2 2 2
dD dx dx

D x x
dt dt dt

dD dx dx
D x x

dt dt dt

−

−

= −

= −

Note that when the object is at the point (1,1), we know that x = 1, 2 21 1 2D −= + = , and 

2
dx

dt
=

2 1 2 1 2 0
dD

dt
=  −  = . 

inches per second. Substituting this information into the above equation yields 

So, 0
dD

dt
= . 

For how many values of x in the interval  0, 2 is the tangent line to the curve 

parallel to the line x = y? ( ) sec cscg x x x= +

A. 0 

B. 2 

C. 3 

D. 4 

12 



  

 

       

 

 
 

 

             

            

 

 

 

 

 

 

 

 

 

 

 

Explanation: 

The correct answer is B. First, use the graphing calculator to graph g(x) on  0, 2 : 

Now, reasoning using the continuity of the graph and the vertical asymptotes reveals that there 

( )2
,a must be tangent lines to g(x) with slope 1 at one x-value in each of the following intervals: 

and ( ),c . 

13 



  

 

  
 

         

  

 

  

 

          

        

 

 

           

     

  

 

  

 

         

            

               

          

 

  

 

       

             

 

 

 

 

Differentiation: Composite, Implicit, and 

Inverse Functions 

About 4–7% of the questions on your exam will cover the topic Differentiation: Composite, 

Implicit, and Inverse Functions. 

Chain Rule 

The chain rule makes it possible to differentiate composite functions. If ( ( ))y f g x= , then the 

chain rule states that ( ( )) ( )f g x gy x =    . In alternative notation, if ( )y f u= and ( )u g x= , then 

. 
dy dy du

dx du dx
= 

The chain rule can be extended to compositions of more than two functions by considering that 

( )g x as described above may itself be a composition. If ( ( ( )))y f g h x= , two applications of the 

chain rule yield ( ( ( ))) ( ( )) ( )y f g h x g h x h x =      . 

Implicit Differentiation and Inverse Functions 

A function may sometimes be presented in implicit, rather than explicit, form. That is, it may not 

be given as ( )y f x= , but rather as an equation that relates x and y to each other. In such cases, 

we say that y is implicitly defined as a function of x . Implicit differentiation is the process of 

finding the derivative 
dy

dx
for such functions, and it is accomplished by applying the chain rule. 

Example 

Consider the equation 
3 3 5y x yx+ + = . Differentiating both sides of the equation with respect to 

x, and remembering that we are assuming that y is, in fact, a function of x (so that the chain rule 

applies), we get 

( ) ( )3 3

2 2

5 5

3 3 1 01

d d
y x xy

dx dx

dy dy
y x y x

dx dx

+ + = =

 +  ++   =

14 



Note that differentiating xy required an application of the product rule, and that every time an 

expression in terms of y was differentiated, the derivative was multiplied by 
dy

dx
. Now all of the 

terms with 
dy

dx
can be gathered on one side of the equation, and 

dy

dx
can be solved for: 

( )

2 2

2 2

2

2

3 3

3 3

3

3

dy dy
y x y x

dx dx

dy
y x y x

dx

dy y x

dx y x

 +  = − −

+ = − −

− −
=

+

This technique can also be applied to find the derivatives of inverse functions. Consider an 

invertible function f, with inverse 
1f −
. By definition this means that ( )1( )f x xf − = . Now, 

differentiating both sides with respect to x, we get ( ) ( )1 1 ) 1( ()f f x f x− −   = . Solving for 

( )1 ( )f x−  , we have . ( )
( )

1

1

1
( )

)(
f x

f f x

−

−
 =



Applying this rule to the inverse trigonometric functions, we can find the following derivatives: 

f f 

arcsin x

2

1

1 x−
arccos x

2

1

1 x

−

−

arctan x
2

1

1 x+
arccot x

2

1

1 x

−

+
arcsec x

2

1

1x x −

arccsc x

2

1

1x x

−

−
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Higher Order Derivatives 

The derivative f  of a function f is itself a function that may be differentiable. If it is, then its 

derivative is f  , called the second derivative of f. The relationship of f  and f  is identical to 

the relationship between f and f  . Similarly, the derivative of f  is f  , the third derivative of 

f. This process can continue indefinitely, as long as the functions obtained continue to be 

differentiable. After three, the notation changes, so that the 4th derivative of f is denoted 
(4)f , 

and the nth derivative is 
( )nf . 

If ( )y f x= , then higher order derivatives are also denoted 
(4) ( ) ,,,, , ny y y y    , or 

2 3

2 3
, , , ,

n

n

d y d y d y

dx dx dx
 

Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 3. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 3. Boston, 

MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 3. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 3. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapter 3. New York, NY: W.H. Freeman. 
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Sample Differentiation: Composite, Implicit, and Inverse Functions 
Questions 

Suppose f(x) is a differentiable function, f(2) = - p
6

, and f(2) = 1
2

. If y = cos(f(x)), compute 
dy

dx
(2). 

A. 

B. 

C. 

D. 

( )− 1
2

sin

( )1
2

cos

1
4

1
2

Explanation: 

The correct answer is C. First, compute the derivative using the chain rule: 

= − sin( ( )) ( )
dy

f x f x
dx

Now, substitute x = 2 and use the information provided: 

( )

( )



= − 

= − − 

= − − 

=

1
6 2

1 1
2 2

1
4

(2) sin( (2)) (2)

sin

dy
f f

dx

What is the equation of the tangent line to ( )−= 1( ) sinf x x at = 1
4

x ? 

A. 

B. 

C. 

D. 

( )− = −2 3 1
3 3 4

y x

( )− = −2 3 1
6 3 4

y x

( )− = −4 15 1
6 15 4

y x

( )− = −4 15 1
3 15 4

y x

Explanation: 

The correct answer is B. First, use the chain rule to compute ( )f x : 

( )
 =  = 

−
−

2

1 1 1 1
( )

2 1 2
1

f x
x x x

x

= 1
4

x :Now, evaluate this expression at 
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 =  =  = =
−

1
4 31 1 3

24 4 4

1 1 1 1 2 3
( ) 1

31 2
f

This is the slope of the tangent line at = 1
4

x . To get the y-value of the point of tangency, 

compute 1
4

( )f : 

( ) ( ) − −= = =1 11 1 1
4 4 2 6

( ) sin sinf

So, using the point-slope form for the equation of a line, the equation of the tangent line is 

( )− = −2 3 1
6 3 4

y x . 

What is the slope of a line perpendicular to the tangent line to the curve defined implicitly by 

x2y2 – xy = 42 at the point (2, –3)? 

A. 

B. 

C. 

D. 

3
26

− 2
3

− 26
3

3
2

Explanation: 

The correct answer is B. This is the correct answer. Implicitly differentiate both sides with 

respect to x: 

( )

( )

   +  − + =

  + − − =

 − = −

−
 =

−

−
 =

−

 = −

2 2

2 2

2 2

2

2

2 2 0

2 2 0

2 2

2

2

(1 2 )

(2 1)

x y y y x xy y

x y y xy xy y

y x y x y xy

y xy
y

x y x

y xy
y

x xy

y
y

x

So, the slope of the tangent line at the point (2, –3) is ( )−
− =

3 3

2 2
. Therefore, any line perpendicular 

to the tangent line at this point would have a slope equal to − 2
3

. 
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Contextual Applications of Differentiation 

Around 6–9% of the questions on your AP exam will cover the topic Contextual Applications of 

Differentiation. 

In any context, the derivative of a function can be interpreted as the instantaneous rate of change 

of the independent variable with respect to the dependent variable. If ( )y f x= , then the units of 

the derivative are the units of y divided by the units of x. 

Straight-Line Motion 

Rectilinear (straight-line) motion is described by a function and its derivatives. 

If the function ( )s t represents the position along a line of a particle at time t, then the velocity is 

)( ()v tt s= given by . When the velocity is positive, the particle is moving to the right; when it is 

negative, the particle is moving to the left. The speed of the 

( )v t

particle does not take direction into 

account, so it is the absolute value of the velocity, or . 

The acceleration of the particle is )( () ( )ta v tt s = =  . The velocity is increasing when ( )a t is 

positive and decreasing when ( )a t is negative. The speed, however, is only increasing when 

( )v t and ( )a t have the same sign (positive or negative). When ( )v t and ( )a t have different 

signs, the particle’s speed is decreasing. 

Related Rates 

Related rates problems involve multiple quantities that are changing in relation to each other. 

Derivatives, and especially the chain rule, are used to solve these problems. Though the 

problems vary widely with context, there are a few steps that usually lead to a solution. 

1. Draw a picture and label relevant quantities with variables. 

2. Express any rates of change given in the problem as derivatives. 

3. Express the rate of change you need to solve for as a derivative. 

4. Relate the variables involved in the rates of change to each other with an equation. 

5. Differentiate both sides of the equation with respect to time. This may involve applying 

many derivative rules but will always involve the chain rule. 

6. Substitute all of the given information into the resulting equation. 

7. Solve for the unknown rate. 

Example 

The length of the horizontal leg of a right triangle is increasing at a rate of 3 ft/sec, and the length 

of the vertical leg is decreasing at a rate of 2 ft/sec. At the instant when the horizontal leg is 7 ft 

and the vertical leg is 1 ft, at what rate is the length of the hypotenuse changing? Is it increasing 

or decreasing? 
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We will follow the steps given above. 

1. 

2. We are given 3
dx

dt
= and 2

dy

dt
= −

3. We need to find 
7, 1x y

dz

dt = =

4. x, y, and z are related by the Pythagorean theorem: 
2 2 2x y z+ =

5. Differentiating both sides of the equation, 

2 2 2
dx dy dz

y z
dt dt dt

x + =

and applying the chain rule (since all of the 

variables are functions of t), we get 

6. After substituting all of the information we 7x = 1y =

( )2(7)(3) 2(1)( 502) 2
dz

dt
+ − =

have, including , , and 

, the equation becomes 2 27 1 50z + ==

7. Solving, we get 
19

50

dz

dt
= . The length of the hypotenuse is increasing since its 

derivative is positive, and it is doing so at a rate of 
19

50
ft/sec 

Linearization 

The line tangent to a function at x c= is the best possible linear approximation to the function 

near x c= . Because of this, the tangent line, seen as a function ( )L x , is also called the 

linearization of the function at the given point. 

Example 

We can use the linearization of 
2

( ) 3 xf x xe−= at 0x = to approximate the value of (0.1)f . To do 

this, 
2 2 2 22( ) 3 23 3 6x x x xf x e x ex x ee− − − − =    −+ = −

0 0(0) 3 6(0 3)f e e = =−

we need to first find the derivative. Applying the product and 

( )0, (0) (0,0)f =

chain rules, we

0x =

 get 

. The slope of the tangent line at is 

. The function passes through the point , so the tangent 

line is 0 3( 0)y x− = − . 

20 



  

            

          

    

 

 

   

 

             

             

            

          

            

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

      

     

    

       

      

     
 

  
 

       

    

     

      

   

       

     

     

     

 

     

     
 

The linearization of f at 0x = is ( ) 3L x x= , so the approximation of (0.1)f is 

(0.1) 3(0.1) 0.3L = = . Note that the true value of (0.1)f is approximately 0.297, so the linear 

approximation was an overestimate. 

L'Hospital's Rule 

When two functions f and g either both have limits of 0 or both have infinite limits, we say that 

the limit of their ratio is an indeterminate form, represented by 
0

0
or 




. Limits that result in one 

of these forms can be evaluated using L’Hospital’s rule. The full statement of L’Hospitals rule is 

as follows: if 
( )

lim
( )x c

f x

g x→
approaches 

0

0
or 




, then 

( ) ( )
lim lim

( ) ( )x c x c

f x f x

g x g x→ →


=


. In other words, when 

we encounter one of these indeterminate forms, we can take the derivative of each of the 

functions, and then reevaluate the limit. 

Free Response Tip 

Limits that require application of L’Hospital’s 
Rule appear often in free response questions. Be 

careful not to confuse L’Hospital’s Rule with the 
quotient rule. The derivative of the ratio is not 

being taken; rather, the derivative of the 

numerator and denominator are taken separately. 

Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 4. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: 

Early Transcendental Functions. 7th edition. Chapter 

4. Boston, MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 4. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals 

Single Variable. 4th edition. Chapter 4. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

2nd Edition. Chapter 4. New York, NY: W.H. Freeman. 
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Sample Contextual Applications of Differentiation Questions 

Compute the limit, provided that it exists: 

1

1
lim 10

sin( 1)x

x

x→ +

−
+

−

A. 3 

11

10

D. Does not exist 

B. 

C. 

Explanation: 

The correct answer is A. First, use the properties of limits to simplify the problem: 

1 1 1 1

1 1 1
lim 10 lim 10 lim 10 lim

sin( 1) sin( 1) sin( 1)x x x x

x x x

x x x→ → → →+ + + +

 − − −
+ = + = + 

− − − 
. 

Observe that since the limit of a constant is the constant, 
1

lim 10 10
x → +

= . The second limit is more 

delicate and can be handled one of two ways: using a known result or l’Hopital’s rule (since it is 
indeterminate of the form 0/0). We show the former: 

1

1 1

11

lim 1
1 1 1

lim lim 1
sin( 1) sin( 1)sin( 1) sin( 1) limlim

( 1) ( 1)( 1)

x

x x

xx

x

x xx x

x xx

→

→ →

→→

+

+ +

++

−
= = = = −

− −−  − −
 − − −− − 

Substituting these results into the initial equation yields 
1

1
lim 10 10 1 9 3

sin( 1)x

x

x→ +

−
+ = − = =

−
. 

Compute the limit: 
30

cos(2 ) 1
lim

(3 1)xx

x

e x→

−

− +

A. –4/9 

B. 0 

C. 4/9 

D. 

Explanation: 

The correct answer is A. Substituting in x = 0 directly shows that the limit is indeterminate of 

the form 0/0. So, use l’Hopital’s rule to compute the limit: 
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3 30 0

30

cos(2 ) 1 2sin(2 )
lim lim  (still 0/0, so apply l'Hopital's rule again!)

(3 1) 3 3

4cos(2 )
lim  (no longer 0/0, so substitute in 0)

9

4

9

x xx x

xx

x x

e x e

x
x

e

→ →

→

− −
=

− + −

−
= =

= −

Let ( )2
3( ) sing x x x= . Determine the smallest nonnegative value of c for which the tangent line 

to g(x) at x = c is horizontal. 

A. 0 

B. 0.511 

C. 4.4.537 

D. 12.654 

Explanation: 

The correct answer is C. Observe ( ) ( )2 1
3 3

1 2
( ) cos sin

32
g x x x x x

x

− =  + 

( ) 0g c =

 that . We must 

determine a value of c for which , which corresponds to an x–intercept of the graph of 

. Use the graphing calculator to get the following: ( )g x

Hence, the smallest such c value is approximately 4.511. 
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Analytical Applications of Differentiation 

About 8–11% of the questions on your AP exam will cover Analytical Applications of 

Differentiation. 

Mean Value Theorem 

The Mean Value Theorem states that the if f is continuous on  ,a b and differentiable on ( ),a b , 

then there is at least one point between a and b at which the instantaneous rate of change of f is 

equal to its average range of change over the entire interval. In other words, there is at least one 

value c in the interval ( ),a b for which . 
( ) ( )

( )
f b f a

c
b a

f
−

 =
−

Free Response Tip 

When part of a free response question contains the 

phrase “explain why there must be a value…” you 

should immediately think of two theorems. If the 

function for which a value is being described is a 

derivative, consider the Mean Value Theorem first. If 

not, consider the Intermediate Value Theorem. In either 

case, make sure to justify why the theorem can be 

applied in terms of continuity and differentiability. 

Intervals of Increase and Decrease and the First Derivative Test 

When the derivative of a function is positive, the function increases, and when the derivative is 

negative, the function decreases. To find intervals on which a function is increasing or 

decreasing, then, it is necessary to solve for where its derivative is positive or negative. The 

procedure for doing this involves first finding the values, called critical points, at which the 

derivative is zero or undefined. 

If f changes from increasing to decreasing at x = c, f has a local maximum at c. If it changes from 
decreasing to increasing at x c= , it has a local minimum at c. Taken together, local maximums 

and local minimums are referred to as local extrema. 

The first derivative test summarizes these facts and describes the process of finding local 

maximums and minimums. Specifically, suppose x c= is a critical point of f. 

24 



Then: 

• If f  is positive to the left of c, and negative to the right of c, then f has a local maximum 

at c. 

• If f  is negative to the left of c, and positive to the right of c, then f has a local minimum 

at c. 

• If neither of the above conditions apply, f does not have a local extreme at c. 

Example 

Let 
5 3( 3)f xx x= − . To find the local extrema of f, we begin by finding the derivative, setting it 

to 0, and solving for x: 

( )

4 2

4 2

2 2

( ) 5 9

9 0

5 9 0

3 3
0, ,

5 5

5

f

x

x x x

x

x x

x

 = −

− =

− =

= −

Since f  is never undefined, these three values are the only critical points of f. These critical 

points divide the real number line into four intervals: 
3

,
5

 
− − 
 

, 
3

,0
5

 
− 
 

, 
3

0,
5

 
 
 

, and 

3
,

5

 
 

 
. From each of these intervals we choose a point and use it to determine whether f  is 

positive or negative on the interval. Note that 
3

1.34
5
 . 

Interval 3
,

5

 
− − 
 

3
,0

5

 
− 
 

3
0,

5

 
 
 

3
,

5

 
 

 

Test point 2− 1− 1 2

( )f a ( 2) 44f  − = ( 1) 4f  − = − (1) 4f  = − (2) 44f  =

  

 

 

                

  

               

  

            

 

  

 

            

   

 

  

 

           

       

           

       

 

 
    

  
 

    

     

   

  

  

  

  

  

  

  

 

             

           

x a=

f  f  f  f Conclusion is positive, 

so f is increasing 

is negative, 

so f is decreasing 

is negative, 

so f is decreasing 

is positive, 

so f is increasing 

Examining the table, we see that f changes from increasing to decreasing 
3

5
x = −

3

5
x =

at , so f has a 

local maximum there. Also, f changes from decreasing to increasing at , so f has a local 
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minimum there. Note that at 0x = f has neither a maximum nor a minimum, since the derivative 

does not change signs from the left to the right of the point. 

Absolute Extrema 

If ( )f c M= is the largest value that f attains on some interval I containing c, then M is called 

the global maximum of f on I . Similarly, if ( )f c M= is the smallest value that f attains on 

some interval I containing c, then M is called the global minimum of f on I . 

There is no reason to expect that an arbitrary function has a global maximum or minimum value 

on a given interval. However, the Extreme Value Theorem guarantees that a function does have a 

global maximum and a global minimum on any closed interval on which it is continuous. On 

such an interval, both of the global extrema must occur at either a critical point or at an endpoint 

of the interval. 

The candidate test gives a procedure for finding these global extrema on a closed interval  ,a b : 

1. Check that f is continuous on  ,a b . 

2. Find the critical numbers of f between a and b. 

3. Check the value of f at each critical number, at a and at b. 

4. The largest value found in the previous step is the global maximum, and the smallest 

value found is the global minimum. 

Concavity and Inflection Points 

The graph of a function f is concave up when its derivative f  is increasing, and it is concave 

down when f  is decreasing. Since the relationship of f  to f  is the same as the relationship 

of f  to f, we can determine on which intervals f  is increasing (or decreasing) by checking 

where f  is positive (or negative). Therefore, the criteria for f being concave up or down can be 

restated in terms of f  : f is concave up when f  is positive, and concave down when f  is 

negative. 

A point at which a function changes concavity (from up to down or down to up) is called a point 

of inflection. These can be found in a completely analogous manner to how local extrema are 

located using the first derivative test: find where the second derivative is 0 or undefined, and test 

points on either side to determine if concavity is changing. 

Second Derivative Test 

In addition to providing information about concavity and inflection points, the second derivative 

of a function can also help determine whether a critical point represents a relative maximum or 

minimum. Specifically, suppose f has a critical point at x c= . 

Then: 
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• if , f has a local minimum at c. 

• if , f has a local maximum at c. 

( ) 0f c 

( ) 0f c 

( ) 0f c =• if , this test is inconclusive, and the first derivative test must be used. 

Summary of Curve Sketching 

The table below summarizes the behavior of a graph at x c= , depending on the values of ( )f c

and . ( )f c

( ) 0f c  ( ) 0f c  ( ) 0f c =

( ) 0f c 

( ) 0f c 

Optimization 

The techniques given for finding local and global extrema can be applied in a wide variety of 

application problems, known as optimization problems. The details of the procedure and strategy 

vary by context, but there are some nearly universal steps for such situations: 

1. Draw a picture. 

2. Write a function for the quantity to be optimized (maximized or minimized). 

3. Rewrite the function from the previous step to be in terms of a single independent 

variable. This often involves using a secondary equation, called a constraint. 

4. Determine the domain of interest. 

5. Differentiate the function and find the relevant critical points. 

6. Use the first derivative test, second derivative test, or candidates test to determine which 

of the critical points or endpoints represent the optimal solution. 
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Example 

A manufacturer wants to construct a cylindrical container with a volume of 5 ft3. Using the steps 

notes, let us find the dimensions of the container that will minimize the amount of material used. 

1. 

2. The quantity to be optimized is the surface area of the container. In terms of r and h, 

the surface area is given by the function 

3. As written, the function that gives the surface area depends on both r and h. However, 

since we know the volume of the cylinder is to be 5, and the volume formula is 

, we have the constraint 
2 5r h = . Solving for h gives 

2

5
h

r
= . This can be 

2V hr=

substituted into the function S: 
2 2 2

2

5 1
22

0
2 2 2r rh r r r

r r
S     



 
+ = + = + 


=


. 

2 22 r rhS  += . 

Now S is written in terms of a single variable, r. 

4. Considering the physical situation, it is clear that the domain of interest is 0r  . A 

cylinder cannot exist with 0r  . 

5. Differentiating 

2

2

3

3

3

10
4

10
4 0

4 10 0

5

2

5

2

dS
r

dr r

r
r

r

r

r











= −

− =

− =

=

=

and setting to zero: 

The derivative is undefined at 0r = , but that is irrelevant since it is not in the 

domain. 
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6. The only critical point is 3
5

2
r


= , and the domain of r is ( )0, , so there are no 

endpoints. To justify that this critical point is indeed a minimum, we will use the 

second derivative test. 
2

2 3

20
4

d S

dr r
= + . Evaluating at 3

5

2
r


= , we have . Since 

2

32

3

20
4 12

5

2

d S

dr
 



= + =
 
 
 

this is positive, the critical point is indeed a minimum, as desired. 

Free Response Tip 

As in the example provided, many applied optimization 

problems appear to have only one possible solution. Even 

when this is the case, make sure you include a justification 

for this solution being the desired optimal point. The 

Second Derivative Test is often the easiest way to do 

this—but keep the First Derivative Test and the Candidate 

Test in mind as well. 

Implicitly Defined Curves 

When a curve is defined implicitly in an equation involving x and y, the applications of 

derivatives discussed in this section still generally apply. As with explicitly defined functions, 

critical points are determined by examining where 0
dy

dx
= or is undefined. However, the details 

of finding where this occurs are often more complicated since the expression for 
dy

dx
usually 

involves both x and y. Second derivatives are often trickier to find as well. Two points are 

helpful: 

• The derivative 
dy

dx
2

2

d dy d y

dx dx dx

 
= 

 
2

2

d y

dx

of with respect to x is

dy

dx

 the second derivative of y with respect to x. In 

other words, . 

• When the expression for involves , it is usually possible to simplify by 

substituting a previously obtained expression for 
dy

dx
. 
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Example 

Suppose 2 2 0x xy+ = . The derivative 
dy

dx
can be found by differentiating with respect to x and 

solving for 
dy

dx
: 

( ) ( )2 2 0

2 2 2 1 0

d d
x xy

dx dx

dy
x y x

dx

dy x y

dx x

+ =

+  +  =

− −
=

To find the second derivative, differentiate both sides of this result with respect to x: 

( ) ( )( )2

2 2

1 11

d dy d x y

dx dx dx x

dy
x

d y dx

dx

x y

x

− −   
=  



−


  


−− − −


 
 =

Now substituting 
x y

x

− −
for 

dy

dx
: 

( ) ( )( )2

2 2 2 2

2
11 1 x

d

x y
x y

x

x x x y x y x y

x x x

y

d

−
  

−  


=

− −

+ = =

− − −
− + + + +
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Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 4. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 4. 

Boston, MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 4. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 4. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 

2nd Edition. Chapter 4. New York, NY: W.H. Freeman. 

Sample Analytical Applications of Differentiation Questions 

What is the absolute maximum value of −= 2 2( ) xg x x e on [–1, 2]? 

A. –1 

B. 0 

C. e2 

D. e –2 

Explanation: 

The correct answer is C. You must first determine all the critical points on the interval [–1,2]. 

Then evaluate g(x) at each of them and identify the largest one as the absolute maximum. The 

endpoints –1 and 2 are automatically endpoints. To find the others, compute the derivative and 

find where it equals zero: 
− −

−

 = − +

= − −

2 2 2

2

( ) ( 2) 2

2 ( 1)

x x

x

g x x e xe

xe x

This is equal to zero when any of its factors equals zero, namely x = 0 and x = 1. So, the list of 

critical points is –1, 0, 1, and 2. Compute g(x) at each of these: 
− −− = = = =2 2 4( 1) , (0) 0, (1) , (2) 4g e g g e g e

Observe that both g(1) and g(2) are less than 1. So, g(–1) = e2 is the absolute maximum. 
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Suppose f(x) is a twice differentiable function. The graph of y = f(x) is as follows: 

On what intervals is the graph of y = f(x) concave down? 

A. ( ) ( )− 1,0 2,6

B. ( ) ( )−  4,2 6,

C. ( ) ( ) ( )− −  −  , 3 1,0 4,

D. ( ) ( )− − , 4 2,6

Explanation: 

graph of y = f(x) is decreasing. This occurs when x is in the set 

The correct answer is C. The graph of y = f(x) is concave down on the intervals where the 

( ) ( ) ( )− −  −  , 3 1,0 4, . 

Suppose f(x) is a function such that f(1) = 1, f(–2) = f(1) = 0, and f(5) does not exist. 

Moreover, the sign of f(x) is given as follows: 

Which of these statements must be true? 

(I) f(x) is increasing on (1,5). 

(II) f(x) has a local maximum at x = 5. 

(III) f(x) has an inflection point at x = 1. 
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A. I and II only 

B. I only 

C. I and III only 

D. I, II, and III 

Explanation: 

The correct answer is C. I is true because f(x) = f(x)) > 0 means f(x) is increasing. (II) is false 

because f(x) could have a vertical asymptote at x = 5; in such case, there is no local maximum at 

x = 5. III is true because the sign of f(x) changes on either side of x = 1 and the point (1, f(1)) 

must exist because f(1) is assumed to exist. 
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Integration and Accumulation of Change 

Around 17–20% of the questions on your exam will cover Integration and Accumulation of 

Change. 

Riemann Sums and the Definite Integral 

When a function represents a rate of change, the area between the graph of the function and the 

x-axis represents the accumulation of the change. If the area is above the x-axis, the accumulated 

change is positive, whereas if the area is below the x-axis, the accumulated change is negative. 

More generally, the accumulation of a function on a closed interval  ,a b , represented 

graphically by the area between a function and the x-axis, is called the definite integral of the 

function on that interval, and is denoted ( )
b

a
dxf x . 

For simple functions, the definite integral can often be evaluated geometrically. 

Example 

To evaluate 
4

1
( 3)x dx

−
− , draw a picture: 

The area between the curve and the graph is divided into two triangles. The larger triangle has an 

area of 8. However, it is below the x-axis, so the accumulation is of negative values. Therefore, it 
contributes a value of 8− to the integral. The smaller triangle accumulates positive values and 

has an area of 
1

2
. Together, we have . 

4

1

1
( 3

15

2
) 8

2
x dx

−
− + = −− =
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Definite integrals can be approximated using a variety of sums, each term of which represents 

the area of a rectangle over a small subinterval. To begin, consider a function ( )f x over the 

interval  ,a b

b a
x

n

−
 =

, and let n be the number of equally 

ix a i x= + 

sized subintervals into which it is split. Then 

is the width of each subinterval, and is the left endpoint of the ith 

subinterval. If a rectangle is constructed on each subinterval so that its height is equal to the 

value of )( if x , the sum of the areas will be ( ) ( ) ( )( )0 1 1n xf x f x f x −+ + +  . This sum is called 

a left Riemann sum. 

The notation 
1

n

i

i

a
=

 stands for the sum 
1 2 na a a+ + + . The left Riemann sum can be written 

using this notation as ( )
1

0

n

i

i

f x x
−

=

 . Other commonly used approximations are the right Riemann 

sum, and the midpoint Riemann sum, shown as follows: 

Left Riemann sum Right Riemann sum Midpoint Riemann sum 

( )
1

0

n

i

i

f x x
−

=

 ( )
1

n

i

i

f x x
=


1

1

0 2

n
i i

i

x
f x

x−
+

=

+ 
 

 


As n increases in size, each of these Riemann sums become a more accurate approximation of 

the definite integral. When the limit is taken as n → , any of these sums become equal to the 

definite integral. 

1

0

( ) lim )(
n

b

i
a n

i

f x xdx f x
−

→
=

= 

In other words, the integral of a function f over the integral  ,a b can be 

defined as , provided this limit exists. 

In fact, although 
b a

x
n

−
 = is the most common way to divide an interval into subintervals, all 

of the above sums can be computed with potentially different x values for each subinterval. 

The limit of the sum is still equal to the definite integral. 

Another expression that can be used to approximate the definite integral is a trapezoidal sum, 

which represents the areas of trapezoids, rather than rectangles, constructed over the 

subintervals. The trapezoidal sum is ( )0 1 2 1) 2 ( ) 2 ( ) 2 ( ) ( )(
2

n n

x
f x f x f x f xf x −


+ + + + + . 
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Free Response Tip 

Free response questions often give values of a function in a table. 

A Riemann sum can be used to approximate its integral using the 

subintervals shown in the table, even if the intervals are not all the 

same length. The length of each subinterval is the distance 

between consecutive x-values, and the height of the rectangle on 

that subinterval is the y-value associated with either the left x (in 

case of a left Riemann sum) or the right x (in case of a right 

Riemann sum). In either case, your sum should have one fewer 

term than there are points given in the table. 

Properties of the Definite Integral 

The definite integral satisfies several properties: 

• ( )
b

a
b ac dx c= − , for any constant c 

• (( ) )
b b

a a
xc ff x dx dc x= 

•  ( ) ( ) ( ) ( )
b b b

a a a
f xxx g x dx f x d g x d =   

• ( ) 0
a

a
f x dx =

• ( ) ( )
b a

a b
f x dx f x dx= − 

• ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +  

Example 

Suppose 
7

1
( ) 9f x dx = and 

1

4

( ) 12f x dx = . Find ( )
4

7
( ) 3 dxf x − . 

First, we have . The latter integral is simply ( )3 4 7 9− = − . ( )
4 4 4

7 7 7
( )) 3 ( 3dx f x dx dxf x = −−  

For the former: 

4 1 4

7 7 1

7

1

( ) ( ) ( )

( ) 12

9 12

3

f x dx f x dx f x dx

f x dx

= +

= − +

= − +

=
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The answer is then ( )
4

7
( ) 3 3 ( 9) 12f x dx− = − − = . 

Accumulation Functions and the Fundamental Theorem of Calculus 

A function can be defined in terms of a definite integral: ( ) ( )
x

a
g x f t dt=  . The first part of the 

Fundamental Theorem of Calculus states that the derivative of this function at a given point is 

equal to the value of the function being accumulated. That is, ( )( ) ( ) ( )
x

a
g

d
x f t dt f x

dx
 = = . 

Since ( ) ( )
a x

x a
f t dt f t dt= −  , we also have ( ) ( )( ) ( ( ))

a x

x a

d

x
f t dt d

d
f x

dx d
f t t= − = −  . If the 

upper limit of integration is a function of x, the chain rule can be applied along with the 

fundamental theorem. 

Example 

If 

2

2
( ) sin

x

f x t dt=  , then 
2( ) sin( ) 2x x xf  = 

Antiderivatives and the Fundamental Theorem of Calculus 

If ( ) ( )g x f x = , g is said to be an antiderivative of f. Note that if C is any constant, then 

 ( ) ( ) 0 ( )
d

g x C g x f x
dx

+ =  + = , so that ( )g x C+ is also an antiderivative of f. In fact, all 

antiderivatives of a given function have this relationship with each other: they differ 

( ) ( )
x

a
g x f t dt= 

only by a 

constant. Every continuous function f has an antiderivative, since the function 

satisfies ( ) ( )g x f x = and is therefore an antiderivative of f. 

The second part of the Fundamental Theorem of Calculus states that 

( ) ( ) ( )
b

a
f x dx F b F a= −

if f is continuous on the 

interval  ,a b , and F is any antiderivative of f on that interval, then . 

This fact means that antiderivatives and integrals are very closely related. Because of this, an 

antiderivative is also called an indefinite integral, and is denoted ( ) ( )f x dx F x C= + , where F 

is any antiderivative. 
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Basic Rules of Antiderivatives 

Since finding an antiderivative is the inverse process of finding a derivative, the rules for 

derivatives can be reversed to find antiderivatives. 

f(x) ( )f x dx
nx 11

1

nx C
n

+

+
+

xe xe C+
1

x

ln x C+

sin x cos x C− +

cos x sin x C+

2sec x tan x C+

sec tanx x sec x C+

csc cotx x csc x C− +

2csc x

  

    

 

          

  

 

 

  

  

  

 
 

  
  

  

  
  

  

 

  

 

      

         

     

    

 

      

 

         

       

 

  

 

       

     

 

 

 

cot x C− +

Integration by Substitution 

Substitution, also known as change of variables, is a technique for finding antiderivatives and is 

analogous 

( ( )) ( ) ( ( ))f g x g x dx f g x C  = +

to the chain rule for derivatives. It works by noting that 

. The technique, then, requires recognizing the ( )g x and ( )g x

in the expression being integrated. 

If ( )u g x= , then ( )x dxdu g= , so the integral can be written ( ) ( )f u du f u C= + . 

When using this technique with definite integrals, it is important to translate the l imits of 

integration to be in terms of the new function u. 

Example 

The integral 2

/2
cos sin d




  

sin 1
2

u


= =
2


 =

can be evaluated by 

 = sin 1u = = −

substituting sinu = . Then cosd du  = . 

When , , and when , . The integral becomes 

0
0

2 3

1
1

1 1 1

3 3 3
0u u ud = =

 
= − −

 
 . 
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Integration by Parts 

Integration by parts is another technique for finding derivatives and is the antidifferentiation 

analogue to the product rule for derivatives. The rule states that dv uv duu v= −  . The key in 

applying it is choosing useful expressions for u and dv. The acronym LIPET can help you 

prioritize the expression chosen for u: Logarithm, Inverse trigonometric, Polynomial, 

Exponential, and Trigonometric. More generally, u should be an expression that will become 

simpler when differentiated, and dv should be an expression for which you can easily find an 

antiderivative. 

Example 

Consider 
1

0

xxe dx . By setting u x= and xdv e dx= , we can find du dx= and 
xv e= . Then, 

using the integration by parts rule (and temporarily ignoring the limits of integration), the 

integral becomes 
x x x x xx xe dx xe e ee= − = − 

( ) ( )
1

1 1 0 0

0
1 0 1x xxe e e e e e= − − − − =  . 

. The answer to the original integral is 

Note that it is possible that the integral v du obtained when integrating by parts itself requires 

another integration by parts. 

Other Integration Techniques 

If the numerator of a rational function has a degree that is at least as high as the degree of the 

denominator, long division is often helpful in integration. 

Example 

Consider 

3

1

x x
dx

x

+

− . Since the numerator has a higher degree than the denominator, long 

division can be applied to transform the integral. We get 

3
2 2

2
1 1

x x
x x

x x

+
= + + +

− −
, so that the 

answer is 3 21 1
2 2ln 1

3 2
x x x x C+ + + − + . 

Another technique that can be useful for some integrals is completing the square. 
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Integration by Partial Fractions 

If a rational function does not lend itself well to long division, it is possible that it can be 

decomposed into a sum of multiple terms, each of which can then be integrated. The AP exam 

only covers situations in which these terms have nonrepeating linear factors. The general 

technique is illustrated in the following example. 

Example 

The rational function 
2

9

3 10

x

x x

+

− −
is not a candidate for long division, and the substitution 

does not yield anything useful, since then 2 3du x= − . Instead, we will 
2 3 10u x x− −=

decompose it into partial fractions. 

To begin, note that the denominator factors as ( 5)( 2)x x− + . We would like to find A and B such 

that 
2

9

3 10 5 2

x A B

x x x x

+
= +

− − − +

9 ( 2) ( 5)x A x B x+ = + + −

. Multiplying 

2x = −

both sides 

7 7B= −

of this equation 

1B = −

by ( 5)( 2)x x− + , we get 

. Substituting gives , so , and substituting 

gives 14 7A= , so 2A = . Thus, we have found that 
2

9 2 1

3 10 5 2

x

x x x x

+
= −

− − − +
. 5x =

The integral of the original expression can now be found: 

2

9 2 1
2ln 5 ln 2

3 10 5 2

x
dx dx x x C

x x x x

+  
= − = − − + + 

− − − + 
 

Improper Integrals 

If an integral has  and has one or both of the limits of integration, it is called an improper 

integral. An improper integral of this type can be evaluated as the limit of a standard definite 

integral. If the limit exists, we say that the integral converges to the value of the limit; otherwise, 

the integral diverges. 

Example 

is evaluated as 
0

lim
a

x

a
e dx−

→  . The antiderivative of 
xe−
is 

xe−− , the expression becomes 

. The integral converges and has a value of 1. ( )0

0
lim 0 1 1

a
x a

a
e e e− −

→
  = + = − −− = −

0

xe dx


−



Another type of improper integral occurs when the integrand is unbounded within the interval of 

integration. This will usually be due to a vertical asymptote. Here too the integral is evaluated 

using the limits of standard integrals as the limits of integration approach the discontinuity. 
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Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapters 5-7. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapters 5 and 8. 

Boston, MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapters 5 and 7. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapters 5 and 7. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapters 5 and 7. New York, NY: W.H. 

Freeman. 

Sample Integration and Accumulation of Change Questions 

Compute ( ) ln x dx . 

A. +2
3

x C

B. +1
2

lnx x C

C. ( ) − +1
2

lnx x x C

D. +1
x

C

Explanation: 

The correct answer is C. First, use the logarithm properties to write ( )ln x as 1
2
ln x . Then, 

( ) = 
1
2

ln lnx dx x dx . To compute  ln x dx , use the integration by parts formula 

= − u dv uv v du with 

= =

= =1

ln

x

u x dv dx

du dx v x

Doing so yields 

= − 

= −

= − +

 



1ln ln

ln 1

ln

x
x dx x x x dx

x x dx

x x x C
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So: 

( )
( )

( )

( )

=

= − +

= − +

= − +

= − +

 
1
2

1
2

1 1
2 2

1 1
2 2

1
2

ln ln

ln

ln

ln

ln

x dx x dx

x x x C

x x x C

x x x C

x x x C

The graph of y = f(t) is given below: 

Define the function . At what x-value does A(x) = 0? 
−

=  − 4
( ) ( ) , 4

x
A x f t dt x

A. 3 

B. 4 

C. 5 

D. 6 

Explanation: 

The correct answer is D. Use the geometric formulas for

−
=

0

4
( ) 6f t dt

 area of rectangles and triangles. 

Observe that A(0) = 2(2) + ½(2)(2) = 6 square units. So, . Now you must determine 

a value of x > 0 such that the area that lies under the t-axis is 6 square units. To this end, observe 

that 
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= =

= − = −

= − = −

= − = −

 







1 1

0 0

3
1
21

4

3

6

4

( ) 0 0

( ) (2)(2) 2

( ) ( 1)(2) 2

( ) ( 1)(2) 2

f t dt dt

f t dt

f t dt

f t dt

So, by interval additivity, 

− −
= = + + + + =     

6 0 1 3 4 6

4 4 0 1 3 4
(6) ( ) ( ) ( ) ( ) ( ) ( ) 0A f t dt f t dt f t dt f t dt f t dt f t dt . 

If , compute 
 
 
 

4

1

3
f . 

−=  2

1 1( ) tan ( )
x

f x t dt

A. 


−
4

3 3

B. 

C. 

D. 

+

3

1 3

−
+

3 1

21 3

 
−

44 3 3

Explanation: 

The correct answer is A. First write the integral so that the upper limit is the variable expression 

by flipping the limits and multiplying the integral by –1. 

− −= = − 
2

2

1 1 1

1
( ) tan ( ) tan ( )

x

x
f x t dt t dt

Now use the fundamental theorem of calculus with the chain rule to differentiate f(x): 

( )− = − 1 2( ) tan 2f x x x

Now compute : 
 
 
 

4

1

3
f
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−

−

      
  = −      
       

 −
=  

 

−
= 

−
=

2

1

4 4 4

1

4

4

4

1 1 1
tan 2

3 3 3

2 1
tan

3 3

2

63

3 3

f
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Differential Equations 

About 6–9% of the questions on your exam will cover Differential Equations. 

Introduction to Differential Equations 

A differential equation is an equation that involves a function and one or more of its derivatives. 

The solution to a differential equation is a function that satisfies the equation 

A differential equation may have infinitely many solutions parameterized by a constant; this is 

called the general solution to the equation. If additional information is given, the constant can be 

determined. This additional information comes in the form of an initial condition; that is, a value 

0 0)(f x y= that must be satisfied by the solution. 

Example 

Consider

siny C x=

 the differential equation y y = − with initial condition 7
2

y
 

= − 
 

( )
2

2
sin sin .

d
C x C x

dx
= −

. Any function of 

the form is a general solution to this equation since Using 

the initial condition given, we have sin
2

7 C


− = , so we can solve to find 7C = − . The solution 

to the equation is 7siny x= − . 

Slope Fields 

A slope field is a graphical representation of a differential equation. At each of finitely many 

points in some section of a plane, a short line is drawn representing the slope of a function. This 

represents a differential equation whose solution is the function whose slopes are being drawn. 

Example 
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The slope field shown represents the differential equation 2
dy

x
dx

= . The solutions to this 

equation are the functions 2y Cx= + , as can be seen in the shapes formed by the slopes shown. 

Euler's Method 

Euler’s Method is a technique for approximating a value of the solution to a differential equation 
given an initial condition. It works by following the slope defined by the differential equation for 

a series of short intervals, called steps, starting at the initial condition. 

Given an initial point ( )0 0,x y , and step size x , successive points ( ),n nx y for 1n  are found 

using the equations 
1n n xx x −= + and 

( )1 1

1

,n n

n n

x y

dy
y y x

dx
− −

−= +   . This process continues until the 

desired point is reached. 

Example 

Given 2 1
dy

xy
dx

= + with initial condition (0,1) , we will approximate (1)y using two steps of 

equal size. 

Since x has to move from 0 to 1 with 2 steps, we have 0.5x = . We have ( )0 0, (0,1)x y = , so 

1 0 0.5 0.5x = + = and ( )1 1 0.5 2(0)(1) 1 1.5y = + + = . Continuing to the next step, we get 

2 0.5 0.5 1x = + = and ( )2 1.5 0.5 2(0.5)(1.5) 1 2.75y = + + = . Our estimate for y(1) is 2.75. 

Separationof Variables 

A certain class of differential equations, called separable equations, can be solved using 

antidifferentiation. The technique requires separating the variables so that each is represented 

only on a single side of the equation. Integrating both sides of the equation then produces a 

general solution. If an initial condition is provided, it can be used to find a particular solution. 

When integrating, it is only necessary to include a constant C on one side of the equation. 

Example 

Consider the differential equation 26
dy

y t
dt

=

2

1
6dy t dt

y
=

with initial condition (1) 1y = . To solve this, we 

begin by separating the variables: . Integrating both sides, we have: 

2

2

1 1
6 3t t Ct

y y
dy d  == +− 
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This gives a general solution, although it is implicitly defined. We can solve for y to make it 

explicit, but it is often advisable to first use the initial condition to solve for C. In this case, 

substituting the initial values results in C = –4. 

Using this value and solving for y, we can obtain the explicit solution: 

2

2

2

1
3

1

3 4

1

3 4

4

t

y

t
y

t

y

=

−

−
=

− −

−

−

=

Exponential Models 

Many applications of differential equations involve an exponential growth or decay model. This 

model occurs in any situation in which the rate of 
dy

ky
dt

=

0

kty y e=

change of a quantity 

0y

is proportional to the 

quantity. As an equation, this is represented by . This equation is easily solved using 

separation of variables, and the general solution is , where is the value of y when 

t = 0. 

Example 

The rate of growth in a bacteria culture is proportional to the number of bacteria present. A 

certain culture starts out with 200 bacteria, and after 2 hours there are 1,000. Let us find the 

number of bacteria present after 5 hours. 

To begin, note that since this follows exponential 

200 kty e=

growth with a starting value of 200, the 

population is modeled by the equation . To solve for k, use the fact that after 2 hours 

there are 1000 bacteria: 
2

2

2

1

l

00

5

n5

0 200 t

t

e

e

t

=

=

=

We can now rewrite the model as 
ln5

2200
t

y e= . The population after 5 hours is 
5ln5

2 11180200e  . 
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Logistic Models 

The logistic model is a population model defined by the differential equation 

where M is called the carrying capacity. Alternatively, this can be written 

( )
dy

ky M y
dt

= − , 

1
dy y

ky
dt M

 
= − 

 
. 

Note that the value of k will be different depending on which form of the equation is used. The 

solution to this differential equation is called a logistic curve, and resembles the following graph: 

The following facts about the logistic function ( )y t are important: 

• ( )y t is increasing for all real numbers 

• ( )y t M for all real numbers t 

• lim ( )
t

y t M
→

=

• The y-coordinate of the inflection point of ( )y t is 
2

M
. At this point, the function 

changes from concave up to concave down, and it is also the point of greatest growth 

rate. 
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Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 11. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: 

Early Transcendental Functions. 7th edition. Chapter 

6. Boston, MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 9. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals 

Single Variable. 4th edition. Chapter 9. New York, 

NY: Macmillan. 

• Sullivan & Miranda. Calculus: Early 

Transcendentals. 2nd Edition. Chapter 16. New York, 

NY: W.H. Freeman. 

Sample Differential Equations Questions 

What is the general solution of the differential equation  =2 4 ( )( )x y xe y x e ? 

A. 

B. 

C. 

D. 

−

 
=   

+ 
4 2

1
( ) ln

2 x
y x

e C

( )−= − +21
4

( ) ln xy x e C

( )= − +
4 2( ) ln 2 xy x e C

( )= − +21
4

( ) ln 2 xy x e C

Explanation: 

The correct answer is A. Separate variables by getting the y-terms on one side and the x-terms 

on the other. Then integrate both sides and solve for y: 
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( )

( )

( )

− −

− −

− −

− −

−

−

−
−

−

 =

=

=

=

=

− = − +

= +

− = +

= − +

= +

 
=   

+ 

 

1
4

2 4 ( )

2 4

2 4

4 2

4 2

4 21 1
4 2

4 2

2

21
4

2

4 2

( )

2

4 ln 2

ln 2

ln 2

1
ln

2

x y x

x y

x y

y x

y x

y x

y x

x

x

x

x

e y x e

dy
e e

dx

e dy e dx

e dy e dx

e dy e dx

e e C

e e C

y e C

y e C

y e C

y
e C

The rate at which a population of gray 

5 2 1
4 16

dP P P

dt

  
= − −  

  

squirrels, P(t), in a state park changes over time is 

governed by the differential equation . Here, P(t) is measured in 

thousands of squirrels and 

0(0)P P=

t is measured in months. For which of the following initial population 

measurements would the population of gray squirrels theoretically increase 

exponentially? 

A. 

B. 

C. 

D. 

(0) 20P =

(0) 16P =

(0) 10P =

(0) 4P =

Explanation: 

The correct answer is A. The equilibrium populations occur when 0
dP

dt
= . Setting the right 

side of the differential equation equal to zero yields P = 8 and P = 16. 
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The corresponding slope field for this equation would look like the following: 

So, for any initial population P(0) larger than 16, the population would increase exponentially. 

So, in particular, if P(0) = 20, this is the case. 

Use Euler’s method with time step h = 0.25 and n = 2 steps to approximate the solution of the 

initial-value problem at time t = 0.5. 
( ) ( )

(0) 2

y t y t t

y

 = +


=

A. 2.500 

B. 3.188 

C. 4.109 

D. 8.250 

Explanation: 

The correct answer is B. In the notation of Euler’s method, we have: 

( ) ( )

( ) ( )

1 1 0 0 0

2 2 1 1 1

,

,

y t y y h f t y

y t y y h f t y

= = +

= = +

where 

0

0 1 2

2, 0.25,

0, 0 0.25, 0 2(0.25) 0.5

( , )

y h

t t t

f t y y t

= =

= = + = + =

= +
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Observe that 

1 1

2 2

( ) 2 0.25(2 0) 2.5

( ) 2.5 0.25(0.25 2.5) 3.1875 3.188

y y t

y y t

= = + + =

= = + + = 
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Applications of Integration 

About 6–9% of the questions on your AP exam will cover Applications of integration. 

Average Value 

If f is continuous on the interval  ,a b , then the average value of f on that interval is 

. If f is nonnegative on the interval, the average value of the function has a (
1

)
b

a
f x dx

b a− 
simple graphical interpretation: it is the height a rectangle over the interval would have to be to 

have the same area as exists between the x-axis and the function. 

Position,Velocity, and Acceleration 

When a particle is moving along a straight line, its motion can be modeled using derivatives, as 

discussed earlier. The theory and techniques of integration now allow us to extend this 

description with the following two points: 

• The displacement of the particle over the time interval  1 2,t t is given by 
2

1

( )
t

t
v t dt , where 

( )v t is the velocity of the particle. 

• The total distance traveled by the particle over the time interval  1 2,t t is 
2

1

( )
t

t
v t dt . 

Recall that ( )v t is the speed of the particle at time t. 

Accumulation Functions in Context 

The net change of a quantity over an interval can be found by integrating the rate of change. This 

is an important fact that can be used in a variety of applications. 

Example 

A tank of water contains 53 gallons at 8:00 AM. Between 8:00 AM and 12:00 PM, water leaks 

from the tank at a rate of ( ) 3 sinL t t= , where t is the number of hours since 8:00 AM, and L is 

measured in gallons per hour. How much water is remaining in the tank at 12:00 PM? 

To solve this, we need to consider two quantities: the amount of water that the tank has at 8:00 

AM, and the total amount of water that leaks from the tank between the hours of 8:00 AM and 

12:00 PM. The first quantity is given as 53. The second quantity is the accumulation of the rate of 
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leaking over the four hours. Therefore, the amount of water remaining in the tank at 12:00 PM is 
4

0
65 i 43 3 s n t dt −  gallons. 

Free Response Tip 

Pay attention to units in free response questions, as they are 

often required to be correct to receive full credit. Remember 

that the units 
dy

dx

( )
b

a
f x dx

of are the units of y over the units of x, and 

the units of are the units of y times the units of x. 

When the units of y are a rate of change over time, and the 

units of x represent time, the units of the integral end up being 

equivalent to whatever quantity is changing. 

Area Between Curves 

If )( ()f gx x on the interval  ,a b , then the area between f on g between a and b is 

. If the two functions intersect on an interval, the integral needs to be split into  ( ) ( )
b

a
dxf x g x−

multiple subintervals, so that along each section the functions can be subtracted in the proper 

order. 

Example 

Let us find the area in the first quadrant bound by the graphs of 
2

(
1

)f x x= , 
2( )g x x= , and the 

line x = 1. This is represented in the following graph: 
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The graphs cross 
1

2
x =

1/2
2

0

1 1

2 48
x x dx

 
− = 

 


at , so we will need to evaluate the two regions 

1
2

1/2

1 5

2 48
x x dx

 
=

 
− 

separately. The first 

region has area , and the second region has area . 

The total area is 
1 5 1

48 48 8
+ = . 

When curves are given as functions of y instead of x, the area between them can be found using 

the same technique. Instead of the integrand being the function on top minus the function on 

bottom, it is the function on the right minus the function on the left. 

Volumes with Cross Sections 

When a solid can be described in terms of its base and cross-sectional shapes, the volume of the 

solid can be computed by integrating the area of the cross sections along an appropriate interval. 

If 

( )
b

a
V A x dx= 

the cross sections described 

( )A x

are perpendicular to the x-axis, the volume is given by 

, where is the area of the cross section in terms of x. If the cross sections are 

perpendicular to the y-axis, the integral is with respect to y: ( )
b

a
V dyA y=  . 

Shapes commonly used as cross sections include squares, rectangles, right triangles, equilateral 

triangles, and semicircles. 

Example 

The base of a solid is the region in the first quadrant of the xy-plane bounded by y x= and the 

vertical line x = 4, shown as follows. Cross sections of the solid taken perpendicular to the y-axis 

are semicircles with the diameter lying in the region given. 
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To find the volume of this solid, we need to first find a formula for the area of each cross section 

and appropriate limits of integration. 

Since the cross sections are perpendicular to the y-axis, the diameter of each semicircle is the 

horizontal distance between y x= and 2x = . Solving the square root function for x, we see 

that this distance is 24 y− . The radius of the semicircle, which we need to calculate its area, is 

half of this, or ( )2 21 1
4 2

2 2
r y y= − = − . The area of the semicircle is 

2

2 2 2 41 1 1 1
( ) 2 2

2 2 2 8
A y r y y y  

   
= − −   

  
= =


+ . 

The limits of integration are the range of y-values that span the region. The lower boundary is 

y = 0, and the upper boundary is 2y =

2
2 4

0

1 32
2

8 15
dV y y y




 
− = +

 
=  . 

. Therefore, the volume of the region is 

Free Response Tip 

Free response volume questions often appear on 

the section that does not allow use of a calculator. 

In that case, the question is usually phrased as “set 
up, but do not evaluate, an integral that 

represents…” This means that you should NOT 
make any attempt at finding a numerical answer; 

rather, just leave the integral itself as your answer. 

Solids of Revolution 

When a solid has circular or washer (ring-shaped) cross sections perpendicular to a vertical or 

horizontal line, it can be described as being obtained by revolving a region around that vertical or 

horizontal line. In this case, the volume can be calculated by a standard formula: 

If the axis of revolution is horizontal, and the cross sections are circles, the volume is • 
2

b

a
r dxV =  , where r is the radius in terms of x. 

• If the axis of revolution is horizontal, and the cross sections are washers, the volume is 

( )2 2
b

a
R r dxV  −=  , where R is the radius of the outer circle, and r is the radius of the 

inner circle. 
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• If the axis of revolution is vertical, and the cross sections are circles, the volume is 
2

b

a
r dyV =  , where r is the radius in terms of y. 

• If the axis of revolution is vertical, and the cross sections are washers, the volume is 

( )2 2
b

a
R r dyV  −=  , where R is the radius of the outer circle, and r is the radius of the 

inner circle. 

Example 

The region bound by the graphs of y = x2 and 

sections perpendicular to the x-axis are washers, with 

y x= is revolved around the line y = 2. The cross 
22R x= − and 2r x= − , shown as 

follows: 

The volume of the solid is ( ) ( )
21 2

2

0

31
2 2

30
V x xx d


  = =

  
− − − . 
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( )f x x a= x b=  
2

(1 )
b

a
xL f x d= +

2( )f x x=  1,3
3

2

1
8.1 2(2 7)L dxx = +

Free Response Tip 

When volume questions do allow use of a 

calculator, you must show the integral you are 

evaluating in addition to the answer you obtained 

on your calculator. The numerical answer itself 

will not be sufficient to obtain full credit. 

Arc Length 

The length of a differentiable function between and is . 

Example 

The length of the arc traced by on the interval is . 

Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 8. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: 

Early Transcendental Functions. 7th edition. 

Chapter 7. Boston, MA: Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. 

Chapters 6 and 8. Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals 

Single Variable. 4th edition. Chapters 6 and 8. New 

York, NY: Macmillan. 

• Sullivan & Miranda. Calculus: Early 

Transcendentals. 2nd Edition. Chapter 6. New York, 

NY: W.H. Freeman. 
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Sample Applications of Integration Questions 

Which of the following expressions is equal to the area under the curve ( ) lng x x= on the 

interval [2,6]? 

A. ( )4 4

1

lim ln
n

i
n n

n
i

→
=



B. ( )4 4

1

lim ln
n

i i
n n

n
i

→
=



C. ( )4 4

1

lim ln 2
n

i
n n

n
i

→
=

+

D. ( )4 4

1

lim ln 2 ln
n

i i
n n

n
i

→
=

 + 

Explanation: 

The correct answer is C. The strategy is to use the definition of the integral: 

( )
1

( ) lim
nb

b a b a
n na n

i

f x dx f a i− −

→ 
=

= + 

Assuming that the right endpoint of the ith subinterval is used as the sample point on this 

interval, and using f(x) = ln(x), a = 2, and b = 6 yields 

( )
6

4 4

2
1

( ) lim ln 2
n

i
n n

n
i

f x dx
→

=

= +  . 

Finally, since the graph of f(x) = ln(x) on the interval [2,6], this integral does indeed represent the 

area of the indicated region. 

Which of the following integrals represents the length of the following curve: 
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A. 
2

2

1
1 (ln )

e

x dx+

B. 1

0

2

1
x

dx+

C. 2

0

2

1 (ln )x dx+

D. 2

2

1

1
1

x

e

dx+

Explanation: 

The correct answer is D. The x–intercept of f(x) is (1,0) and 2ln 2x x e=  = . So, the interval 

of integration is ( )21,e . The arc length formula for a curve y = f(x) on an interval (a,b) is 

( )
2

1 ( )
b

a
f x dx+ . Using that here with a = 1, b = 2e , and 1( )

x
f x = yields the integral 

. ( ) 2

2 2
2

1 1

1 1
1 1

x x

e e

dx dx+ = + 

Let B(r) denote the number (measured in hundreds) of boulders with radius ≤ r meters in a small 

patch of a quarry. Geological data suggests that the radii are distributed according to the 

piecewise function 

1.9

2.1

3.1 , 3
( )

1.8 , 3

r r
B r

r r

−

−

 
 = 



Approximately how many boulders with radii between 1.3 and 3.4 meters are there in this small 

patch of quarry? 

A. 26 

B. 73 

C. 140 

D. 150 

Explanation: 

The correct answer is D. The accumulation of the number of boulders with radii between 1.3 

and 3.4 meters is equal to the integral 
3.4

1.3
( )B r dr . Since the integrand is piecewise–defined, we 

need to use interval additivity to write this integral as 
3 3.4

1.3 3
( ) ( )B r dr B r dr +  . Compute as 

follows: 
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( ) ( )

3 3.4 3 3.4
1.9 2.1

1.3 3 1.3 3

3 3.4
0.9 1.1

1.3 3

0.9 0.9 1.1 1.1

( ) ( ) 3.1 1.8

3.1 1.8
0.9 1.1

3.1 1.8
3 1.3 3.4 3

0.9 1.1

1.50

B r dr B r dr r dr r dr

r r

− −

− −

− − − −

 + = +

=  + 
− −

 − − −
−



   

So, there are about 150 such boulders. 
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( )( ), ( )x t y t

t a= t b=

Parametric Equations, Polar Coordinates, 

and Vector-Valued Functions 

Around 11–12% of the questions on your exam will cover the topic Parametric Equations, Polar 

Coordinates, and Vector-Valued Functions. 

Parametric Equations 

A curve in the xy-plane can be defined parametrically by a pair of functions ( )( ), ( )x t y t , where t 

ranges of over some set of real numbers. The value of 
dy

dx
on such a curve is the slope of the line 

tangent to the curve, and it is calculated by 

dy
dy dt

dxdx

dt

= . If 
dy

dt
and 0

dx

dt
= at a particular point, 

then the curve has a vertical tangent line at that point. The second derivative is obtained by 

differentiating 
dy

dx
with respect to t, and then dividing by 

dx

dt
: 

2

2

d dy

d y dt dx

dxdx

dt

 
 
 = . The length of 

the curve defined by ( )( ), ( )x t y t as t ranges from a to b is 2 2( )] ([ ][ )
b

a
x y dtt t + . 

If a parametric curve ( )( ), ( )x t y t represents the motion of a particle moving in a plane, then the 

velocities in the horizontal and vertical directions are ( )x t and ( )y t respectively, and the 

corresponding accelerations are ( )x t and ( )y t . The speed of the particle is    
2 2

( ) ( )x yt t + 

so the integral for arc length given represents the distance traveled by the particle. 

Vector-Valued Functions 

Vector valued functions can be differentiated and integrated by performing these operations on 

each component. If a parametric curve represents the motion of a particle moving in 

a plane during the time interval to , then the state and properties of the particle can be 

given in terms of vector valued functions. 

• The position vector at time t is ( ),) ( )( x t y tt =r

( ) ( ), ( )t t tx y=  v• The velocity vector at time t is 
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• The displacement vector is ( ) , ( )
b b

a a
tx yt dt t d  

• The speed of the particle at time t is    
2 2

( ) ( ) ( )s yt x t t=  + 

• The distance traveled is 2 2( )] ([ ][ )
b

a
x y dtt t +

• The acceleration vector of the particle is ( ) ( ), ( )t t y tx=  a

Polar Coordinates 

A point in the plane can be represented by the polar coordinates ( ),r  , where r is the distance 

from the origin, and  is the angle between the positive x-axis and a ray drawn to the point. The 

relationship between polar coordinates and the standard rectangular coordinates ( , )x y is 

represented in four equations: 

• 

• 

• 

• 

cosx r =

siny r =
2 2 2r x y= +

tan
y

x
 =

The curve defined by a polar function defined by ( )r f = is equivalent to the parametric curve 

given by cos ( )cosx fr   == and sin ( )siny fr   == . 

Therefore, the slope of the line tangent to a polar curve is 

dy

dy d
dxdx

d





=

The area of the polar region bounded by the origin and the curve ( )r f = between  = and 

 =

1 2r r

is 21

2

b

a
r d . Similarly, the area of the region between 1 ( )r f = and 2 ( )r g = , where 

between  = and  = is ( )2 2

2 1

1

2

b

a
r r d− . 
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Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th edition. 

Chapters 4 and 8. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 10. Boston, MA: 

Cengage Learning. 

• Stewart, et al. Single Variable Calculus. 9th edition. Chapter 10. 

Boston, MA: Cengage Learning. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 11. New York, NY: Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapters 9 and 11. New York, NY: W.H. Freeman. 

Sample Parametric Equations, Polar Coordinates, and Vector-

Valued Functions Questions 

Suppose a particle is moving in the xy-plane so that its position at time t is given by the vector-

valued function ( ) ( ), ( ) ,r t x t y t= , where 
3( ) , ( )t tx t e y t e−= = for 0 ln 2t  (measured in 

minutes). What are the components of the acceleration vector at ln 2t = minutes? 

A. 

B. 

C. 

D. 

2,54−

1
2
,72

1
2
, 24−

1
2
,8

Explanation: 

The correct answer is B. The acceleration vector we seek is equal to (ln 2)r . Observe that 
3

3

3

( ) , ( )

( ) , ( ) 3

( ) , ( ) 9

t t

t t

t t

x t e y t e

x t e y t e

x t e y t e

−

−

−

= =

 = − =

 = =

As such, 
1 3ln 2 3ln 2 ln 2 ln 2 1

2
(ln 2) ,9 ,9 ,72r e e e e

−− = = = . 
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An object moves along a path in the xy-plane so that it starts at t = 0 at the point (1, 1) and moves 

with velocity vector 3( ) 3,v t t t= . What is the displacement on the time interval (1, 8)? 

A. 

B. 

C. 

D. 

0,7

381
7

21,

0,15

7
3

0,

Explanation: 

The correct answer is B. Displacement on a time interval (a,b) of an object with velocity vector 

( )v t is given by ( )
b

a
v t dt . Here, we must compute 

8
3

1
3, t t dt . This is done componentwise, 

as follows: 

7
3

4
3

7 7
3 3

88 8 8
3 3 3

71 1 1 1

3 3
7 7

384 3 384 3 381
7 7 7 7 7

3, 3 , 3 ,

3 8, (8) 3 1, (1)

24, 3, 24 3, 21,

t

t t dt dt t t dt t t

=

= =

=  − 

= − = − − =

  

Suppose the velocity vector of a particle moving in space is given by 

( ) cos(2 ),1,sin(3 ) , 0v t t t t= 

the following is its position vector ( )r t

. If the particle starts at the point (3, –1, 1) at time t = 0, which of 

? 

A. ( ) sin(2 ) 3, 1,2 cos(3 ) , 0r t t t t t= + − − 

B. ( ) 3 sin(2 ), 1, cos(3 ) , 0r t t t t t= − − 

C. 1 4 1
2 3 3

( ) sin(2 ) 3, 1, cos(3 ) , 0r t t t t t= + − − 

D. 1 1
2 3

( ) sin(2 ), , cos(3 ) , 0r t t t t t= − 

Explanation: 

The correct answer is B. Since ( ) ( )v t r t= , this problem is equivalent to finding the vector 

satisfying ( )r t

( ) cos(2 ),1,sin(3 ) , 0

(0) 3, 1 ,1

r t t t t

r

 = 


= − −

Integrate componentwise to find the general anti–derivative, using u–substitutions on the first 

and third components: 
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1 1
1 2 32 3

( ) sin(2 ) , , cos(3 ) , 0r t t C t C t C t= + + − + 

Now, use the fact that (0) 3, 1 ,1r = − − to find the constants: 

1
1 2 33

(0) , , 3, 1 ,1r C C C= − + = − −

So, 4
1 2 3 3

3, 1, and C C C= = − = . Therefore, . 1 4 1
2 3 3

( ) sin(2 ) 3, 1, cos(3 ) , 0r t t t t t= + − − 
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na
lim 0
n→



na ( )na f n=

 ),N 

0
( )f x dx





na nb n na b

0

n

n

b


=


0

n

n

a


=


0

n

n

a


=


0

n

n

b


=



na nb lim n

n
n

c
a

b→
=

( 1)n

na− 1( 1)n

na+− na

Infinite Sequences and Series 

Finally, about 17–18% of the questions on your exam will cover Infinite Sequences and Series. 

Convergent and Divergent Series 

A sequence is a function f(n) whose domain consists only of nonnegative integers. The notation 

( )na f n= is often used. A sequence converges to L if lim n
n

a L
→

= , and it diverges if this limit is 

infinite or does not exist. 

An infinite series is a sum of the form 0 1 2

0

n

n

a aa a


=

+ + += . The Nth partial sum of the series 

is the sum of its first N terms: 0 1

0

N

N n N

n

S a aa a
=

== + + + . If the sequence of partial sums 
NS

converges to S, we say that the series converges, and that it has sum S. If the sequence of partial 

sums diverges, the series diverges. 

There are several tests that help in determining convergence or divergence of a series. 

Test: nth Term Test 
Applies to: 

Conclusion(s): If , the series diverges. 

Test: Integral Test 
Applies to: , where for some function f which is non-negative and decreasing 

on an interval of the form for some value N 

Conclusion(s): The series converges if and only if the improper integral converges. 

Test: Direct Comparison Test 
Applies to: and of non-negative terms, where 

Conclusion(s): If converges, then converges. If diverges, then diverges. 

Test: Limit Comparison Test 

Applies to: and of non-negative terms, and . 

Conclusion(s): If c is positive and finite, then either both series converge or both series 

diverge. 

Test: Alternating Series Test 
Applies to: or , where is non-negative 
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na 0lim n
n

a
→

=

NS

1N NS S a +− 

na 1lim n

n
n

L
a

a

+

→
=

1L  1L 

1L =

Conclusion(s): If is decreasing and , then the series converges. 

Notes: When an alternating series converges, we can also determine how far any of the partial 

sums are from the sum of the infinite series: if is the Nth partial sum, and the series 

converges to S, then . In other words, the error obtained from truncating the 

series of a particular term is no greater than the first omitted term. This fact is known as the 

alternating series error bound. 

Test: Ratio Test 

Applies to: , and 

Conclusion(s): If , the series converges. If , the series diverges. 

Notes: If , the test is inconclusive. 

Geometric Series and p-Series 

A series of the form 
0

n

n

ar


=

 is called a geometric series. If 1r  , this series converges to 
1

a

r−
. If 

1r  , the series diverges. It is important to note here that a is the first term of the series; if the 

series does not start with 0n =

1

1
p

n n



=



, its value should be determined 

1p 

by finding the first term. 

1p A p-series is of the form . This series converges if and diverges if . When 

1p = , the series 
1

1

n n



=

 is called the harmonic series, which diverges. 

Absolute and Conditional Convergence 

A series is said to be absolutely convergent if the series consisting of the absolute values of its 

terms converges. In other words, 
na is absolutely convergent if 

na converges. If a series 

is absolutely convergent then it is also convergent. It is possible, however, for a series to be 

convergent but not absolutely convergent. In this case, the series is called conditionally 

convergent. Testing for absolute convergence is often done directly by replacing the terms of a 

sequence with their absolute values. If the ratio test is used for the original series, however, the 

absolute values do not need to be checked, as the test guarantees absolute convergence on its 

own. 
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Taylor Polynomials 

The kth Taylor polynomial ( )kP x centered at x c= for a function ( )f x is the kth degree 

polynomial that best approximates f near x c= . The terms of this polynomial are of the form 

( )n

na x c− , where 

( ) ( )

!

n

n

f
a

c

n
= . For example, the first five Taylor polynomials are: 

• 
0( ) ( )P x f c=

• 
1( ) ( ) ( )( )P x f c f c x c= +  −

• 2

2

( )
( ) ( ) ( ) ) (

2
( )

f c
x f c f c xP c x c


= +  − + −

• 2 3

3

( ) ( )
( ) ( ) ( )( ) ( ) ( )

62
P

f c f c
x f c f c x c x c x c

 
= +  − + −+−

• 
(4)

2 3 4

4

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )

62 24
P

f c f c f c
x f c f c x c x c x c x c

 
+

  
= +  + +− − − −

The Taylor polynomials of a function can be used to approximate the value

1( )P x

 of the function, in the 

same way that linearization was used. The 1st degree Taylor polynomial is, in fact, the 

linearization of f(x). 

Example 

Consider ( ) cosf x x= at 0c = . At 0, the values of f and its first few derivatives are as follows: 

n ( ) (0)

!

n

n

f

0 cos x 1 1 

1 sin x− 0 0 

2 cos x− -1 1

2
−

3 sin x 0 0 

4 cos x 1 1

24

5 sin x− 0 0 

6 cos x− -1 1

720
−

  

  

 

            

              

    

  

  

  

  

  

 

          

          

   

 

  

 

          

 

   
 

    

    

   
 

    

   
 

    

   
 

 

     

 

 

 

( ) ( )nf x ( ) (0)nf

The sixth Taylor polynomial is 2 4 6

6

1 1 1
( ) 1

2 24 720
P x x x x−= − +
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Error Bounds 

If the terms of a Taylor polynomial form an alternating series, the alternating series error bound 

can be used to bound the difference between the Taylor polynomial approximation at some point 
near the center x c= and the actual value of the function. 

Example 

The sixth Taylor polynomial for ( ) cosf x x= centered at 0c = is 

2 4 6

6

1 1 1
( ) 1

2 24 720
P x x x x−= − + . This is the alternating series for which the nth term is 

2

( 1)
(2 )!

n
n x

n
− . 

Suppose we use 
6 ( )P x to approximate the value of cos0.1: 

6(0.1) 0.99500cos0.1 P  . The 

first omitted term is 

8
4

8!
( 1)

x
− , so this estimated value is off by at most 

8
130.1

2.48 10
8!

−  . 

The Lagrange error bound gives an alternative way to calculate an error bound for any Taylor 

polynomial, even if it is not an alternating series. Suppose the nth Taylor polynomial for f 

centered at c is used to approximate the value of ( )f x . Let M be at least as large as the 

maximum value attained by 
( 1)nf +

on the interval between c and x. The difference between the 

estimated value ( )nP x and the true value of the function ( )f x is at most 

1

( 1)!

n
x c

n
M

+
−

+

Free Response Tip 

When applying the Lagrange 
( 1)nf +

error bound, enough 

information about must be available to 

obtain a value for M. This may be stated explicitly, 

the increasing/decreasing nature of 

, or related to the fact that the sin and cos 

functions are always bounded by 1. 

implied by 
( 1)nf +

Radius and Interval of Convergence 

A power series centered at c is a series of the form 
0

( )n

n

n

a x c


=

− . Note that this includes a 

variable, x, so that the series is in fact a function of x. Therefore, the convergence or divergence 

of the series depends on x. 
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Despite this, there are only three possibilities: 

• The series diverges for all x. In this case, we say that the radius of convergence of the 

series is  . 

• The series converges for only a single x. The radius of convergence is 0. 

• The series converges only for all x within some interval centered at c. The radius of 

convergence is the distance between c and either endpoint of the interval. 

The radius of convergence is usually found using the ratio test. Once this radius is known, it s till 

remains to determine whether the series converges or diverges at the endpoints of the interval. 

Example 

Consider the series 
0

2
(3 2)

n
n

n

x
n



=

− . To determine the interval of convergence, we will apply the 

ratio test: 
1

11

11

lim lim 3 2 3 2

3 2
lim

3 2

2
lim 3 2

1

2 3 2

2 2

1

2

1 2

n n
n nn

n n
n

nn

nnn

n

a
x x

a

x

n

x

n
x

n

n

x

n

n

+
++

→ →

++

→

→



=
+

=
+

−  −

−

−

= −
+

= −

The ratio test says this will converge when the limit is less than 1: 
6

2
2 1

2
3

3 1 xx − −  . 

The radius of convergence is 
1

6
, and the interval of convergence is tentatively 

1 5

2 6
x  . 

If 
1

2
x = , the series is , which converges by the 

0 0 0

2 1 2 1 ( 1)
3 2

2 2

n nn n n

n n nn n n

  

= = =

−   
 − −   


= =

  
  

alternating series test. If 
5

6
x = , the series is , which is the 

0 0 0

2 5 2 1
3 2

6 2

1
n nn n

n n nn n n

  

= = =

   
 −  =  =

   
  

divergent harmonic series. 

Therefore, the full interval of convergence is 
1 5

,
2 6

 


 
. 
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Taylor and Maclaurin Series 

If the terms used in constructing the Taylor polynomials for a function f are extended infinitely, 

the resulting power series is called the Taylor series for f centered at c. When 0c = , this series is 

also called the Maclaurin series for f. 

Some common Maclaurin series are shown in the following table: 

Function Maclaurin Series Interval of Convergence 

ln(1 )x+
1

1

( 1)
n

n

n

x

n


+

=

−
( )1,1−

sin x 2 1

0

( 1)
(2 1)!

n
n

n

x

n

+

=

−
+


( ),− 

cos x 2

0

( 1)
(2 )!

n
n

n

x

n



=

−
( ),− 

xe

0 !

n

n

x

n



=


( ),− 

  

 
  

 

         

               

     

 

        

 

 

      

  
 

 
 

 

 
 

 

 
 

 

 
 

 

 

         

       

 

 

  

 

           

           

        

 

 

 

1

1 x−
0

n

n

x


=


( )1,1−

Power series can be manipulated using algebraic techniques such as substitution, as well as 

differentiation and integration, to produce new series from previously known ones. 

Example 

We can derive the Maclaurin series for 
1tan x−

starting with the known series 
0

1

1

n

n

x
x



=

=
−

 . 

Substituting x− for x, we get 
0

1

1
( 1)n n

n

x
x



=

−=
+

 , and further substituting 
2x for x gives 

. Now integrating both sides with respect to x results in the desired series: 

. 

2

2
0

1

1
( 1)n n

n

x
x



=

= −
+


2 1

1

0

tan
2 1

( 1)
n

n

n

x
x

n

+
−

=

= −
+
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Free Response Tip 

When a free response question asks you to find a 

Taylor or Maclaurin series for a function, always 

begin by thinking about the series you already 

know. Use of the series for sin x , cos x , and 
xe

are especially common. 

Suggested Reading 

• Hughes-Hallett, et al. Calculus: Single Variable. 7th edition. 

Chapters 9 and 10. New York, NY: Wiley. 

• Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 9. Boston, 

MA: Cengage Learning. 

• Single Variable Calculus 9e, Stewart et al. Chapter 11. 

• Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 10. New York, NY: 

Macmillan. 

• Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapter 8. New York, NY: W.H. Freeman. 
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Sample Infinite Sequences and Series Questions 

For which of the following choices of 
nc would the series 

4
1 3

n

n

c

n n



= +
 necessarily diverge using 

the Limit Comparison Test? 

A. 1
n n

c =

B. 2nc =

C. 2 5 4nc n n= + +

D. 31nc n= +

Explanation: 

The correct answer is D. Consider the series 
3

4
1

1

3n

n

n n



=

+

+
 . Let 

3

4

1

3
n

n
a

n n

+
=

+
and 

3

4

1

3 3
n

n
b

n n
= = . 

Observe that 
1

1

3n n



=

 is divergent, being a constant multiple of the divergent harmonic series 
1

1

n n



=

 . 

Also, . 

3

44

4

1

3 33lim lim lim 1 0
1 3

3

n

n n n
n

n
a n nn n

b n n

n

→ → → 

+

++= = = 
+

So, by the Limit Comparison Test, the series 
3

4
1

1

3n

n

n n



=

+

+
 must diverge. 

Suppose 0na 

1

( 1)n

n

n

a


=

−

, for all integers n 1 . Which of the following conditions ensures that the series 

converges conditionally? 

A. 

B. 

1lim 1n

n
n

a

a

+

→
=

lim 0n
n

a
→



C.  na

2
1

n

n

a

n



=



decreases to zero 

D. converges. 

Explanation: 

The correct answer is C. This is the hypothesis of the Alternating Series Test and ensures that 

the series is conditionally convergent. Choice A is actually inconclusive, as seen by examples 
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using the ratio test. If 
2

1
n n

a = the series converges, but for 
na n= the series would diverge. 

However, 1lim 1n

n
n

a

a

+

→
= for both choices of 

na . Choice B would actually guarantee that the series 

diverges. Choice D is insufficient; for instance, if 1na = for all n, then 
1 1

( 1) ( 1)n n

n

n n

a
 

= =

− = − 

diverges. 

Which of the following is the MacLaurin series for ( )2( ) sing x x= ? 

A. 

B. 

C. 

D. 

2

0

, | |
!

n

n

x
x

n



=

 
4

0

( 1)
, | |

(2 )!

n n

n

x
x

n



=

−
 

2 3

0

( 1)
, | |

(2 1)!

n n

n

x
x

n

+

=

−
 

+


4 2

0

( 1)
, | |

(2 1)!

n n

n

x
x

n

+

=

−
 

+


Explanation: 

The correct answer is D. Begin with the MacLaurin series for sin(u): 

2 1

0

( 1)
sin

(2 1)!

n n

n

u
u

n

+

=

−
=

+
 . 

Now, substitute 
2u x= and simplify: 

( )
( )

2 1
2 4 2

2

0 0

( 1) ( 1)
sin

(2 1)! (2 1)!

n
n n n

n n

x x
x

n n

+
+ 

= =

− −
= =

+ +
  . 
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