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Key Exam Details 
 

The AP® Calculus BC exam is a 3-hour 15-minute, end-of-course test comprised of 45 multiple-

choice questions (50% of the exam) and 6 free-response questions (50% of the exam). 

 

The exam covers the following course content categories: 

 

¶ Limits and Continuity: 4ï7% of test questions 

¶ Differentiation: Definition and Fundamental Properties: 4ï7% of test questions 

¶ Differentiation: Composite, Implicit, and Inverse Functions 4ï7% of test questions 

¶ Contextual Applications of Differentiation: 6ï9% of test questions 

¶ Analytical Applications of Differentiation: 8ï11% of test questions 

¶ Integration and Accumulation of Change: 17ï20% of test questions 

¶ Differential Equations: 6ï9% of test questions 

¶ Applications of Integration: 6ï9% of test questions 

¶ Parametric Equations, Polar Coordinates, and Vector-Valued Functions: 11ï12% of test 

questions 

¶ Infinite Sequences and Series: 17ï18% of test questions 

 

This guide offers an overview of the main tested subjects, along with sample AP multiple-choice 

questions that look like the questions youôll see on test day. 

 

 

Limits and Continuity  
 

About 4ð7% of the questions on your exam will cover Limits and Continuity. 

 

 

Limits   

 

The limit of a function f as x approaches c is L if the value of f can be made arbitrarily close to L 

by taking x sufficiently close to c (but not equal to c). If such a value exists, this is denoted 

lim ( )
x c

f x L
­

= . If no such value exists, we say that the limit does not exist, abbreviated DNE. 

 

Limits can be found using tables, graphs, and algebra. 

 

Important algebraic techniques for finding limits include factoring and rationalizing radical 

expressions. Other helpful tools are given by the following properties. 

 

Suppose lim ( )
x c

f x L
­

= , lim ( )
x c

g x M
­

= , lim ( )
x L

h x N
­

= , and a is any real number.  
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Then: 

 

¶ [ ])l )im ( (
x c

f x g x L M
­

+ = + 

¶ [ ])l )im ( (
x c

f x g x L M
­

- = - 

¶ [ ]lim ( )
x c

aLaf x
­

=  

¶ 
( )

lim
( )x c

f x L

g x M­
= , as long as 0M ¸  

¶ ( )lim ( )
x c

Nh f x
­

=  

 

For many common functions, evaluating limits requires nothing more than evaluating the 

function at the point c (assuming the function is defined at the point). These include polynomial, 

rational, exponential, logarithmic, and trigonometric functions. 

 

Two special limits that are important in calculus are 
0

sin
lim 1
x

x

x­
=  and 

0

1 cos
lim 0
x

x

x­

-
= . 

 

One-Sided Limits  

 

Sometimes we are interested in the value that a function f approaches as x approaches c from 

only a single direction. If the values of f get arbitrarily close to L as x approaches c while taking 

on values greater than c, we say lim ( )
x c

f x L
+­

= . Similarly, if x is taking on values less than c, we 

write lim ( )
x c

f x L
-­

= . 

 

We can now characterize limits by saying that lim ( )
x c

f x
­

 exists if and only if both lim ( )
x c

f x
+­

 and 

lim ( )
x c

f x
-­

 exist and have the same value. A limit, then, can fail to exist in a few ways: 

¶ lim ( )
x c

f x
+­

 does not exist 

¶ lim ( )
x c

f x
-­

 does not exist 

¶ Both of the one-sided limits exist, but have different values 
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Example  

 

 
 

 

The function shown has the following limits: 

 

¶ 
2

1l ( )im
x

f x
-­-

=- 

¶ 
2

1li ( )m
x

f x
+­-

=  

¶ 
2

)li (m
x

f x
­-

 DNE 

¶ 
1

4l ( )im
x

f x
-­

=  

¶ 
1

4l ( )im
x

f x
+­

=  

¶ 
1

4l ( )im
x

f x
­

=  

 

Note that f(1) = 3, but this is irrelevant to the value of the limit. 

 

Infinite Limits, Limits at Infinity, and Asymptotes   
 

When a function has a vertical asymptote at x = c, the behavior of the function can be described 

using infinite limits. If the function values increase as they approach the asymptote, we say the 

limit is Ð, whereas if the values decrease as they approach the asymptote, the limit is -Ð. It is 

important to realize that these limits do not exist in the same sense that we described earlier; 

rather, saying that a limit is °¤is simply a convenient way to describe the behavior of the 

function approaching the point. 

 
We can also extend limits by considering how the function behaves as x­°¤. If such a limit 

exists, it means that the function approaches a horizontal line as x increases or decreases without 

bound. In other words, if ( )lim
x

f x L
­°¤

= , then f has a horizontal asymptote y L= . It is possible for 

a function to have two horizontal asymptotes since it can have different limits as x­¤ and 
x­-¤. 
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The Squeeze Theorem 
 

The Squeeze Theorem states that if the graph of a function lies between the graphs of two other 

functions, and if the two other functions share a limit at a certain point, then the function in 

between also shares that same limit. More formally, if )( () ( )g x xf hx ¢ ¢  for all x in some 

interval containing c, and if lim ( ) lim ( )
x c x c

f x h x L
­ ­

= =, then lim ( )
x c

g x L
­

=  as well. 

 

Example  

 

The sine function satisfies sin 11 x¢ ¢-  for all real numbers x, so 11
1

sin
x

å õ
¢ ¢æ ö

ç ÷
-  is also true 

for all real numbers x. Multiplying this inequality by 
2x , we obtain 

2 2 21
sinx x

x
x-

å õ
¢ ¢æ ö

ç ÷
. Now 

the functions on the left and right of the inequality, 
2x  and 

2x- , both have limits of 0 as 0x­ . 

Therefore, we can conclude that 
2

0

1
lim sin 0
x

x
x­

å õ
=æ ö

ç ÷
 also. 

 

Continuity   

 

The function f is said to be continuous at the point x c=  if it meets the following criteria: 

 

1. ( )f c  exists 

2. )lim (
x c

f x
­

 exists 

3. ( ) ( )lim
x c

f x f c
­

=  

 

In other words, the function must have a limit at c, and the limit must be the actual value of the 

function. 

 

Each of the above criteria can fail, resulting in a discontinuity at x = c. Consider the following 

three graphs: 
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In graph A, the function is not defined at c. In graph B, the function is defined at c, but the limit 

as x c­  does not exist due to the one-sided limits being different. In graph C, the function is 

defined at c and the limit as x c­  exists, but they are not equal to each other. 

 

The discontinuity in graph B is referred to as a jump discontinuity, since it is caused by the graph 

jumping when it reaches x = c. In contrast to this is the situation in graph C, where the 

discontinuity could be fixed by moving a single point; it occurs whenever the second condition 

above is satisfied and is called a removable discontinuity. If lim ( )
x c

f x
­

 exists, but f has a 

discontinuity at x = c because it fails one of the other conditions, the discontinuity can be 

removed by defining or redefining f(c) to be equal to the limit at that point. 

 

A function is continuous on an interval if it is continuous at every point in the interval. The 

following categories of functions are continuous at every point in their respective domains: 

 

¶ Polynomial 

¶ Rational 

¶ Power 

¶ Exponential 

¶ Logarithmic 

¶ Trigonometric 

 

If f is a piecewise-defined function with continuous component functions, then checking for 

continuity consists of checking whether it is continuous at its boundary points. Continuity at a 

boundary point requires that the functions on both sides of the point give the same result when 

evaluated at the point. 

 

Intermediate Value Theorem  

 

The Intermediate Value Theorem applies to continuous functions on an interval [ ],a b . If d is any 

value between f(a) and f(b), then there must be at least one number c between a and b such that 

f(c) = d. 

 

Example  

 

Consider 2( ) xf x e -= , which is continuous everywhere. We have 
0 2 1(0)f e= - =-, and f(1) = 

e ï 2, which is certainly positive. If we take 0d=  in the statement of the theorem, then d is 

between f(0) and f(1). Therefore, the Intermediate Value Theorem guarantees at least one value c 

between 0 and 1 with the property that ( ) 0f c = . This value, of course, is ln 2c= . 
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Sample Limits and Continuity Questions 
 

Consider the following graphs of f and g: 

 

 

 
 

 

Compute [ ]
2

lim 3 ( ) ( )
x

f x g x
+­

- , provided the limit exists.  

A. Does not exist 

B. 4 

C. 6 

D. 7 

 

Explanation: 

The correct answer is D. First, use linearity to write: 

 

[ ]
2 2 2

lim 3 ( ) ( ) 3 lim ( ) lim ( )
x x x

f x g x f x g x
+ + +­ ­ ­

- = - . 

Suggested Reading 
 

¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 1. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 2. Boston, 

MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 2. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 2. New York, NY: 

Macmillan.  

¶ Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapter 1. New York, NY: W.H. Freeman. 
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Now, observe that
2 2

lim ( ) 3 and lim ( ) 2
x x

f x g x
+ +­ ­

= =. Substituting these values above yields 

[ ]
2 2 2

lim 3 ( ) ( ) 3 lim ( ) lim ( ) 3(3) 2 7
x x x

f x g x f x g x
+ + +­ ­ ­

- = - = - =. 

 

 

Suppose that ( )3
( ) 2cosf x xp=  and the graph of g(x) is given by  

 

 
 

 

Compute
3

lim ( ) ( )
x

f x g x
­-

Ö , provided it exists. 

A. ï6 

B. 4 

C. 6 

D. Does not exist 

 

Explanation: 

The correct answer is C. Use the fact that the limit of a product is the product of the limits, 

provided they both exist independently, to compute: 

 

( )( )
( )( )( )

( )( )( )

( )( )

3 3 3

3

lim ( ) ( ) lim ( ) lim ( )

2cos ( 3) 3

2cos 3

2 3

6

x x x
f x g x f x g x

p

p

­- ­- ­-
Ö = Ö

= Ö - Ö -

= - Ö -

= - -

=

  

 

 

Which of the following limits does not exist? 



 8 

A. 
sin

lim
x

x

x­¤
 

B. 
1

| 1|
lim

1x

x

x­

-

-
 

C. 
2

3

0
lim

x
x

+­

  

D. lim sec
x

x
p­ -

  

 

Explanation: 

The correct answer is B. Recall that  

1, 1
| 1|

1 , 1

x x
x

x x

- ²ë
- =ì

- <í
  

So,  

1, 1| 1|

1, 11

xx

xx

<ë-
=ì
- >- í

  

Hence, 
1

| 1|
lim 1

1x

x

x+­

-
=-

-
 while

1

| 1|
lim 1

1x

x

x-­

-
=

-
. Since these values are different, it follows that 

there is a jump at x = 1 and so, 
1

| 1|
lim

1x

x

x­

-

-
 does not exist.  
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Differentiation: Definition and 

Fundamental Properties 
 

About 4ï7% of the questions on your AP exam will cover Differentiation: Definition and 

Fundamental Properties. 

 

 

Definition of the Derivative  

 
The average rate of change of a function f over the interval from x a= to x a h= + is 

( ) ( )f a h f a

h

+ -
. Alternatively, if x a h= +, this can be written 

( ) ( )f x f a

x a

-

-
. When h is made 

smaller, so that it approaches 0, the limit that results is called the instantaneous rate of change of 

f at x a= , or the derivative of f at x a= , and is denoted ( )f a¡ .  

That is, 
0

( ) ( )
( ) lim

h

f a h f a
a

h
f

­

+ -
¡ = , or equivalently, 

( ) ( )
( ) lim

x a

f x f a
a

x a
f

­

-
¡ =

-
. 

If this limit exists, f is said to be differentiable at a. Graphically, ( )f a¡ represents the slope of the 

line tangent to the graph of ( )f x  at the point where x a= . Therefore, the line tangent to f(x) at x 

= a is )( )( ()y f aa af x¡ -- = . 

 

If the function ( )y f x=  is differentiable at all points in some interval, we can define a new 

function on that interval by finding the derivative at every point. This new function, called the 

derivative of f, can be denoted ( )f x¡ , y¡, or 
dy

dx
, and is defined by 

0

( ) ( )
( ) lim

h

f x h f x
x

h
f

­

+ -
¡ = . 

The value of the derivative at a particular point x a=  can then be denoted ( )f a¡  or 
x a

dy

dx =

 

 

If f is differentiable at x a= , then it also must be continuous at x a= . In other words, if a 

function fails to be continuous at a point, it cannot possibly be differentiable at that point. 

Another way that differentiability can fail is via the presence of sharp turns or cusps in a graph. 

 

 

 

 

 

 

 

 

 

 

 

Free Response Tip 
 

When specific function values are given, the 

derivative at a point can be approximated by 

finding the average rate of change between 

surrounding points. For example, if you are 

given values of a function at x = 3, 4, and 5, then 

the derivative at 4 can be approximated by the 

average rate of change between 3 and 5. 
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Basic Derivatives and Rules  
 

There are several rules that can be used to find derivatives. Assume f and g are differentiable 

functions, and c is a real number. 

¶ The constant rule: 0
d

c
dx
=  

¶ The power rule: 1n nd
x

x
nx

d

-= , for any real number n 

¶ The sum rule: [ ]( ) ( ) ( ) ( )
d

f x g x f x g x
dx

+ = ¡ + ¡ 

¶ The difference rule: [ ]( ) ( ) ( ) ( )
d

f x g x f x g x
dx

- = ¡ - ¡ 

¶ The constant multiple rule: [ ]( ) ( )
d

cf x cf x
dx

= ¡  

¶ The product rule: [ ]( ) ( ) ( ) ( ) ( ) ( )
d

f x g x f x g x f x g x
dx

= ¡ + ¡ 

¶ The quotient rule: 
[ ]

2

( ) ( ) ( ) ( ) ( )

( ) ( )

d f x x g x f x g x

dx g x g x

fè ø ¡ - ¡
=é ù

ê ú
 

 

As special cases of the power rule, note that ( )
d

cx c
dx

= , and 1
d

x
dx
= . 

 

In addition to these rules, the derivatives of some common functions are as follows: 

 

 

f(x) ( )f x¡  
xe  

xe  

ln x  1

x
 

sinx  cosx  

cosx  sinx-  
tanx  2sec x  

secx sec tanx x 

cscx  csc cotx x-  
cotx 2csc x-  
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Sample Differentiation: Definition and Fundamental Properties 

Questions  
 

Boyleôs laws states that if a gas is compressed by constant temperature, the product of the 

volume and pressure remains constant; that is, VP = K, where K is a constant. Which of the 

following equals the instantaneous rate of change of pressure with respect to volume? 

 

A. ïK 

B. 0 

C. 
2KV-  

D. 
2

K

V
-  

 

Explanation: 

The correct answer is D. Observe that since VP = K, it follows that
1P KV-= . Differentiating 

both sides with respect to V yields
2

2

dP K
KV

dV V

-=- =-.  

 

 

 

 

 

 

Suggested Reading 

 
¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapters 2 and 3. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 3. Boston, 

MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapters 2 and 3. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 3. New York, NY: 

Macmillan.  

¶ Sullivan & Miranda. Calculus: Early Transcendentals. 

2nd Edition. Chapter 2. New York, NY: W.H. Freeman. 
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An object moves along the curve y =
1

x
, starting at x =

1

10
. As it passes through the point (1,1) its 

x-coordinate increases at a rate of 2 inches per second. How fast is the distance between the 

object and the origin changing at this instance in time? 

 

A. 0 inches per second  

B. 4 2  inches per second  

C. 2  inches per second  

D. ï2 inches per second  

 

Explanation: 

The correct answer is A. The position of a point on this curve is of the form( ) ( )1, ,
x

x y x= . So, 

the distance D between it and the origin is

( ) ( ) ( ) ( )
22 2 2 2 210 0 0 0

x
D x y x x x-= - + - = - + - = + . 

 

While we could differentiate both sides with respect to t directly, the presence of the radical 

makes this inconvenient. So, we square both sides first to get 2 2 2D x x-= +  and now differentiate 

both sides with respect to t. Doing so yields:  

3

3

2 2 2
dD dx dx

D x x
dt dt dt

dD dx dx
D x x

dt dt dt

-

-

= -

= -

  

 

Note that when the object is at the point (1,1), we know that x = 1, 2 21 1 2D -= + = , and 

2
dx

dt
=  inches per second. Substituting this information into the above equation yields

2 1 2 1 2 0
dD

dt
= Ö - Ö =. 

 

So, 0
dD

dt
= . 

 

 

For how many values of x in the interval [ ]0,2p  is the tangent line to the curve 

( ) sec cscg x x x= +  parallel to the line x = y? 

 

A. 0 

B. 2 

C. 3 

D. 4 
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Explanation: 

The correct answer is B. First, use the graphing calculator to graph g(x) on [ ]0,2p : 

 

 
 

 

Now, reasoning using the continuity of the graph and the vertical asymptotes reveals that there 

must be tangent lines to g(x) with slope 1 at one x-value in each of the following intervals: ( )2
,a p  

and ( ),cp . 
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Differentiation: Composite, Implicit, and 

Inverse Functions 
 

About 4ï7% of the questions on your exam will cover the topic Differentiation: Composite, 

Implicit, and Inverse Functions. 

 

Chain Rule  

 

The chain rule makes it possible to differentiate composite functions. If ( ( ))y f g x= , then the 

chain rule states that ( ( )) ( )f g x gy x¡= ¡ Ö ¡. In alternative notation, if ( )y f u=  and ( )u g x= , then 

dy dy du

dx du dx
= Ö . 

 

The chain rule can be extended to compositions of more than two functions by considering that 

( )g x  as described above may itself be a composition. If ( ( ( )))y f g h x= , two applications of the 

chain rule yield ( ( ( ))) ( ( )) ( )y f g h x g h x h x¡= ¡ Ö ¡ Ö ¡. 

 

Implicit Differentiation and Inverse Functions   

 

A function may sometimes be presented in implicit, rather than explicit, form. That is, it may not 

be given as ( )y f x= , but rather as an equation that relates x and y to each other. In such cases, 

we say that y is implicitly defined as a function of x . Implicit differentiation is the process of 

finding the derivative 
dy

dx
 for such functions, and it is accomplished by applying the chain rule. 

 

Example  

 

Consider the equation 
3 3 5y x yx+ + =. Differentiating both sides of the equation with respect to 

x, and remembering that we are assuming that y is, in fact, a function of x (so that the chain rule 

applies), we get 

 

( ) ()3 3

2 2

5 5

3 3 1 01

d d
y x xy

dx dx

dy dy
y x y x

dx dx

+ + = =

Ö + Ö ++ Ö Ö =
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Note that differentiating xyrequired an application of the product rule, and that every time an 

expression in terms of y was differentiated, the derivative was multiplied by 
dy

dx
. Now all of the 

terms with 
dy

dx
 can be gathered on one side of the equation, and 

dy

dx
 can be solved for: 

 

( )

2 2

2 2

2

2

3 3

3 3

3

3

dy dy
y x y x

dx dx

dy
y x y x

dx

dy y x

dx y x

Ö + Ö =- -

+ =- -

- -
=

+

 

 

This technique can also be applied to find the derivatives of inverse functions. Consider an 

invertible function f, with inverse 
1f - . By definition this means that ( )1( )f x xf - = . Now, 

differentiating both sides with respect to x, we get ( )( )1 1 ) 1( ()f f x f x- -¡ Ö ¡ =. Solving for 

( )1 ( )f x- ¡ , we have ( )
( )

1

1

1
( )

)(
f x

f f x

-

-
¡ =

¡
. 

 

Applying this rule to the inverse trigonometric functions, we can find the following derivatives: 

 

 

f f¡ 

arcsinx 

2

1

1 x-
 

arccosx  

2

1

1 x

-

-
 

arctanx  
2

1

1 x+
 

arccotx  
2

1

1 x

-

+
 

arcsecx  

2

1

1x x -
 

arccscx  

2

1

1x x

-

-
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Higher Order Derivatives  

 

The derivative f¡ of a function f is itself a function that may be differentiable. If it is, then its 

derivative is f¡¡, called the second derivative of f. The relationship of f¡and f¡¡is identical to 

the relationship between f and f¡. Similarly, the derivative of f¡¡is f¡¡¡, the third derivative of 

f. This process can continue indefinitely, as long as the functions obtained continue to be 

differentiable. After three, the notation changes, so that the 4th derivative of f is denoted 
(4)f , 

and the nth derivative is 
( )nf . 

 

If ( )y f x= , then higher order derivatives are also denoted 
(4) ( ),,,, , ny y y y¡¡ ¡¡¡ » », or 

2 3

2 3
, , , ,

n

n

d y d y d y

dx dx dx
» » 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Suggested Reading 
 

¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 3. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 3. Boston, 

MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 3. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 3. New York, NY: 

Macmillan.  

¶ Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapter 3. New York, NY: W.H. Freeman. 

 
 



 17 

Sample Differentiation: Composite, Implicit, and Inverse Functions 
Questions  
 

Suppose f(x) is a differentiable function, f(2) = - p
6

, and f¡(2) = 1
2

. If y = cos(f(x)), compute 
dy

dx
(2). 

 

A. ()- 1
2

sin   

B. ()1
2

cos   

C. 1
4
  

D. 1
2

  

 

Explanation: 

The correct answer is C. First, compute the derivative using the chain rule: 

¡=- Ösin( ( )) ( )
dy

f x f x
dx

  

Now, substitute x = 2 and use the information provided: 

( )

( )

p

¡=- Ö

=- - Ö

=- - Ö

=

1
6 2

1 1
2 2

1
4

(2) sin( (2)) (2)

sin

dy
f f

dx

  

 

 

What is the equation of the tangent line to ( )-= 1( ) sinf x x  at =1
4

x ? 

A. ( )p- = -2 3 1
3 3 4

y x   

B. ( )p- = -2 3 1
6 3 4

y x   

C. ( )p- = -4 15 1
6 15 4

y x   

D. ( )p- = -4 15 1
3 15 4

y x   

 

Explanation: 

The correct answer is B. First, use the chain rule to compute ¡( )f x : 

( )
¡ = Ö = Ö

-
-

2

1 1 1 1
( )

2 1 2
1

f x
x x x

x

  

Now, evaluate this expression at =1
4

x : 
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¡ = Ö = Ö = =
-

1
4 31 1 3

24 4 4

1 1 1 1 2 3
( ) 1

31 2
f   

This is the slope of the tangent line at =1
4

x . To get the y-value of the point of tangency, 

compute 1
4

( )f : 

( ) () p- -= = =1 11 1 1
4 4 2 6

( ) sin sinf   

So, using the point-slope form for the equation of a line, the equation of the tangent line is  

( )p- = -2 3 1
6 3 4

y x . 

 

 

 

What is the slope of a line perpendicular to the tangent line to the curve defined implicitly by 

x2y2 ï xy = 42 at the point (2, ï3)? 

 

A. 3
26

 

B. -2
3

 

C. -26
3

 

D. 3
2

 

 

Explanation: 

The correct answer is B. This is the correct answer. Implicitly differentiate both sides with 

respect to x: 

( )

( )

¡ ¡Ö Ö + Ö - + =

¡ ¡Ö + - - =

¡ - = -

-
¡=

-

-
¡=

-

¡=-

2 2

2 2

2 2

2

2

2 2 0

2 2 0

2 2

2

2

(1 2 )

(2 1)

x y y y x xy y

x y y xy xy y

y x y x y xy

y xy
y

x y x

y xy
y

x xy

y
y

x

  

So, the slope of the tangent line at the point (2, ï3) is ( )-
- =

3 3

2 2
. Therefore, any line perpendicular 

to the tangent line at this point would have a slope equal to -2
3

. 
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Contextual Applications of Differentiation 
 

Around 6ï9% of the questions on your AP exam will cover the topic Contextual Applications of 

Differentiation. 

 

In any context, the derivative of a function can be interpreted as the instantaneous rate of change 

of the independent variable with respect to the dependent variable. If ( )y f x= , then the units of 

the derivative are the units of y divided by the units of x. 

 

Straight-Line Motion   

 

Rectilinear (straight-line) motion is described by a function and its derivatives. 

If the function ( )s t represents the position along a line of a particle at time t, then the velocity is 

given by )( ()v tt s=¡ . When the velocity is positive, the particle is moving to the right; when it is 

negative, the particle is moving to the left. The speed of the particle does not take direction into 

account, so it is the absolute value of the velocity, or ( )v t . 

The acceleration of the particle is )( () ( )ta v tt s¡ = ¡= ¡ . The velocity is increasing when ( )a t  is 

positive and decreasing when ( )a t  is negative. The speed, however, is only increasing when 

( )v t  and ( )a t  have the same sign (positive or negative). When ( )v t  and ( )a t  have different 

signs, the particleôs speed is decreasing. 

 

Related Rates  
 

Related rates problems involve multiple quantities that are changing in relation to each other. 

Derivatives, and especially the chain rule, are used to solve these problems. Though the 

problems vary widely with context, there are a few steps that usually lead to a solution. 

 

1. Draw a picture and label relevant quantities with variables. 

2. Express any rates of change given in the problem as derivatives. 

3. Express the rate of change you need to solve for as a derivative. 

4. Relate the variables involved in the rates of change to each other with an equation. 

5. Differentiate both sides of the equation with respect to time. This may involve applying 

many derivative rules but will always involve the chain rule. 

6. Substitute all of the given information into the resulting equation. 

7. Solve for the unknown rate. 

 

Example  

 

The length of the horizontal leg of a right triangle is increasing at a rate of 3 ft/sec, and the length 

of the vertical leg is decreasing at a rate of 2 ft/sec. At the instant when the horizontal leg is 7 ft 

and the vertical leg is 1 ft, at what rate is the length of the hypotenuse changing? Is it increasing 

or decreasing? 
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We will follow the steps given above. 

 

1.  
 

 

2. We are given 3
dx

dt
=  and 2

dy

dt
=- 

3. We need to find 
7, 1x y

dz

dt = =

 

4. x, y, and z are related by the Pythagorean theorem: 
2 2 2x y z+ =  

5. Differentiating both sides of the equation, and applying the chain rule (since all of the 

variables are functions of t), we get 2 2 2
dx dy dz

y z
dt dt dt

x + =  

6. After substituting all of the information we have, including 7x= , 1y= , and 

2 27 1 50z + == , the equation becomes ( )2(7)(3) 2(1)( 502) 2
dz

dt
+ - =  

7. Solving, we get 
19

50

dz

dt
= . The length of the hypotenuse is increasing since its 

derivative is positive, and it is doing so at a rate of 
19

50
 ft/sec 

 

Linearization   

 

The line tangent to a function at x c=  is the best possible linear approximation to the function 

near x c= . Because of this, the tangent line, seen as a function ( )L x , is also called the 

linearization of the function at the given point. 

 

Example  

 

We can use the linearization of 
2

( ) 3 xf x xe-= at 0x=  to approximate the value of (0.1)f . To do 

this, we need to first find the derivative. Applying the product and chain rules, we get 
2 2 2 22( ) 3 23 3 6x x x xf x e x ex x ee- - - -¡ = Ö Ö Ö-+ = - . The slope of the tangent line at 0x=  is 

0 0(0) 3 6(0 3)f e e¡ = =- . The function passes through the point ( )0, (0) (0,0)f = , so the tangent 

line is 0 3( 0)y x- = -.  
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The linearization of f at 0x=  is ( ) 3L x x= , so the approximation of (0.1)f  is 

(0.1) 3(0.1) 0.3L = = . Note that the true value of (0.1)f  is approximately 0.297, so the linear 

approximation was an overestimate. 

 

 

L'Hospital's Rule   

 

When two functions f and g either both have limits of 0 or both have infinite limits, we say that 

the limit of their ratio is an indeterminate form, represented by 
0

0
 or 
¤

¤
. Limits that result in one 

of these forms can be evaluated using LôHospitalôs rule. The full statement of LôHospitals rule is 

as follows: if 
( )

lim
( )x c

f x

g x­
 approaches 

0

0
 or 
¤

¤
, then 

( ) ( )
lim lim

( ) ( )x c x c

f x f x

g x g x­ ­

¡
=

¡
. In other words, when 

we encounter one of these indeterminate forms, we can take the derivative of each of the 

functions, and then reevaluate the limit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Free Response Tip 
 

Limits that require application of LôHospitalôs 

Rule appear often in free response questions. Be 

careful not to confuse LôHospitalôs Rule with the 

quotient rule. The derivative of the ratio is not 

being taken; rather, the derivative of the 

numerator and denominator are taken separately. 
 

Suggested Reading 
 

¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 4. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: 

Early Transcendental Functions. 7th edition. Chapter 

4. Boston, MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 4. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals 

Single Variable. 4th edition. Chapter 4. New York, NY: 

Macmillan.  

¶ Sullivan & Miranda. Calculus: Early Transcendentals. 

2nd Edition. Chapter 4. New York, NY: W.H. Freeman. 
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Sample Contextual Applications of Differentiation Questions  
 

Compute the limit, provided that it exists: 

 

1

1
lim 10

sin( 1)x

x

x­ +

-
+

-
  

 

A. 3 

B. 11  

C. 10  

D. Does not exist 

 

Explanation: 

The correct answer is A. First, use the properties of limits to simplify the problem: 

1 1 1 1

1 1 1
lim 10 lim 10 lim 10 lim

sin( 1) sin( 1) sin( 1)x x x x

x x x

x x x­ ­ ­ ­+ + + +

å õ- - -
+ = + = +æ ö

- - -ç ÷
. 

 

Observe that since the limit of a constant is the constant, 
1

lim 10 10
x­ +

= . The second limit is more 

delicate and can be handled one of two ways: using a known result or lôHopitalôs rule (since it is 

indeterminate of the form 0/0). We show the former: 

1

1 1

11

lim 1
1 1 1

lim lim 1
sin( 1) sin( 1)sin( 1) sin( 1) limlim

( 1) ( 1)( 1)

x

x x

xx

x

x xx x

x xx

­

­ ­

­­

+

+ +

++

-
= = = =-

- -- å õ- -
æ ö- - -- -ç ÷

 

 

Substituting these results into the initial equation yields 
1

1
lim 10 10 1 9 3

sin( 1)x

x

x­ +

-
+ = - = =

-
. 

 

 

Compute the limit: 
30

cos(2 ) 1
lim

(3 1)xx

x

e x­

-

- +
 

A. ï4/9 

B. 0 

C. 4/9 

D. ¤  

 

Explanation: 

The correct answer is A. Substituting in x = 0 directly shows that the limit is indeterminate of 

the form 0/0. So, use lôHopitalôs rule to compute the limit: 



 23 

3 30 0

30

cos(2 ) 1 2sin(2 )
lim lim  (still 0/0, so apply l'Hopital's rule again!)

(3 1) 3 3

4cos(2 )
lim  (no longer 0/0, so substitute in 0)

9

4

9

x xx x

xx

x x

e x e

x
x

e

­ ­

­

- -
=

- + -

-
= =

=-

 

 

 

Let ( )2
3( ) sing x x x= . Determine the smallest nonnegative value of c for which the tangent line 

to g(x) at x = c is horizontal. 

 

A. 0 

B. 0.511 

C. 4.4.537  

D. 12.654 

 

Explanation: 

The correct answer is C. Observe that ( ) ( )2 1
3 3

1 2
( ) cos sin

32
g x x x x x

x

-¡ = Ö + Ö  . We must 

determine a value of c for which( ) 0g c¡ = , which corresponds to an xïintercept of the graph of 

( )g x¡ . Use the graphing calculator to get the following: 

 

 
 

Hence, the smallest such c value is approximately 4.511.  
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Analytical Applications of Differentiation 
 

About 8ï11% of the questions on your AP exam will cover Analytical Applications of 

Differentiation. 

 

Mean Value Theorem  

 

The Mean Value Theorem states that the if f is continuous on [ ],a b  and differentiable on ( ),a b , 

then there is at least one point between a and b at which the instantaneous rate of change of f is 

equal to its average range of change over the entire interval. In other words, there is at least one 

value c in the interval ( ),a b  for which 
( ) ( )

( )
f b f a

c
b a

f
-

¡ =
-

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intervals of Increase and Decrease and the First Derivative Test  
 

When the derivative of a function is positive, the function increases, and when the derivative is 

negative, the function decreases. To find intervals on which a function is increasing or 

decreasing, then, it is necessary to solve for where its derivative is positive or negative. The 

procedure for doing this involves first finding the values, called critical points, at which the 

derivative is zero or undefined. 

 

If f changes from increasing to decreasing at x = c, f has a local maximum at c. If it changes from 
decreasing to increasing at x c= , it has a local minimum at c. Taken together, local maximums 

and local minimums are referred to as local extrema. 

 

The first derivative test summarizes these facts and describes the process of finding local 

maximums and minimums. Specifically, suppose x c= is a critical point of f.  

 

 

Free Response Tip 
 

When part of a free response question contains the 

phrase ñexplain why there must be a valueéò you 

should immediately think of two theorems. If the 

function for which a value is being described is a 

derivative, consider the Mean Value Theorem first. If 

not, consider the Intermediate Value Theorem. In either 

case, make sure to justify why the theorem can be 

applied in terms of continuity and differentiability. 
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Then: 

 

¶ If f¡ is positive to the left of c, and negative to the right of c, then f has a local maximum 

at c. 

¶ If f¡ is negative to the left of c, and positive to the right of c, then f has a local minimum 

at c. 

¶ If neither of the above conditions apply, f does not have a local extreme at c. 

 

Example  

 

Let 
5 3( 3)f xx x= - . To find the local extrema of f, we begin by finding the derivative, setting it 

to 0, and solving for x: 

 

 ( )

4 2

4 2

2 2

( ) 5 9

9 0

5 9 0

3 3
0, ,

5 5

5

f

x

x x x

x

x x

x

¡ = -

- =

- =

= -

 

 

Since f¡ is never undefined, these three values are the only critical points of f. These critical 

points divide the real number line into four intervals: 
3

,
5

å õ
-¤ -æ ö
ç ÷

, 
3

,0
5

å õ
-æ ö
ç ÷

,
3

0,
5

å õ
æ ö
ç ÷

, and 

3
,

5

å õ
¤æ ö

ç ÷
. From each of these intervals we choose a point and use it to determine whether f¡ is 

positive or negative on the interval. Note that 
3

1.34
5
º . 

 

Interval  3
,

5

å õ
-¤ -æ ö
ç ÷

 
3

,0
5

å õ
-æ ö
ç ÷

 
3

0,
5

å õ
æ ö
ç ÷

 
3

,
5

å õ
¤æ ö

ç ÷
 

Test point 
x a=  

2-  1-  1 2  

( )f a¡  ( 2) 44f¡ - = ( 1) 4f¡ - =- (1) 4f¡ =- (2) 44f¡ =  

Conclusion f¡ is positive, 

so f is increasing 

f¡ is negative, 

so f is decreasing 

f¡ is negative, 

so f is decreasing 

f¡ is positive, 

so f is increasing 

 

Examining the table, we see that f changes from increasing to decreasing at 
3

5
x=- , so f has a 

local maximum there. Also, f changes from decreasing to increasing at 
3

5
x= , so f has a local 
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minimum there. Note that at 0x=  f has neither a maximum nor a minimum, since the derivative 

does not change signs from the left to the right of the point. 

 

Absolute Extrema  

 

If ( )f c M=  is the largest value that f attains on some interval I containing c, then M is called 

the global maximum of f on I . Similarly, if ( )f c M=  is the smallest value that f attains on 

some interval I containing c, then M is called the global minimum of f on I . 

 

There is no reason to expect that an arbitrary function has a global maximum or minimum value 

on a given interval. However, the Extreme Value Theorem guarantees that a function does have a 

global maximum and a global minimum on any closed interval on which it is continuous. On 

such an interval, both of the global extrema must occur at either a critical point or at an endpoint 

of the interval. 

 

The candidate test gives a procedure for finding these global extrema on a closed interval [ ],a b : 

 

1. Check that f is continuous on [ ],a b . 

2. Find the critical numbers of f between a and b. 

3. Check the value of f at each critical number, at a and at b. 

4. The largest value found in the previous step is the global maximum, and the smallest 

value found is the global minimum. 

 

Concavity and Inflection Points  

 

The graph of a function f is concave up when its derivative f¡ is increasing, and it is concave 

down when f¡ is decreasing. Since the relationship of f¡¡ to f¡ is the same as the relationship 

of f¡ to f, we can determine on which intervals f¡ is increasing (or decreasing) by checking 

where f¡¡ is positive (or negative). Therefore, the criteria for f being concave up or down can be 

restated in terms of f¡¡: f is concave up when f¡¡ is positive, and concave down when f¡¡ is 

negative. 

 

A point at which a function changes concavity (from up to down or down to up) is called a point 

of inflection. These can be found in a completely analogous manner to how local extrema are 

located using the first derivative test: find where the second derivative is 0 or undefined, and test 

points on either side to determine if concavity is changing. 

 

Second Derivative Test  
 

In addition to providing information about concavity and inflection points, the second derivative 

of a function can also help determine whether a critical point represents a relative maximum or 

minimum. Specifically, suppose f has a critical point at x c= .  

Then: 
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¶ if ( ) 0f c¡¡ >, f has a local minimum at c. 

¶ if ( ) 0f c¡¡ <, f has a local maximum at c. 

¶ if ( ) 0f c¡¡ =, this test is inconclusive, and the first derivative test must be used. 

 

Summary of Curve Sketching  
 

The table below summarizes the behavior of a graph at x c= , depending on the values of ( )f c¡  

and ( )f c¡¡. 

 

 ( ) 0f c¡ > ( ) 0f c¡ < ( ) 0f c¡ = 

( ) 0f c¡¡ > 

 
 

 
( ) 0f c¡¡ < 

   

 

 
Optimization   

 

The techniques given for finding local and global extrema can be applied in a wide variety of 

application problems, known as optimization problems. The details of the procedure and strategy 

vary by context, but there are some nearly universal steps for such situations: 

 

1. Draw a picture. 

2. Write a function for the quantity to be optimized (maximized or minimized). 

3. Rewrite the function from the previous step to be in terms of a single independent 

variable. This often involves using a secondary equation, called a constraint. 

4. Determine the domain of interest. 

5. Differentiate the function and find the relevant critical points. 

6. Use the first derivative test, second derivative test, or candidates test to determine which 

of the critical points or endpoints represent the optimal solution. 
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Example  

 

A manufacturer wants to construct a cylindrical container with a volume of 5 ft3. Using the steps 

notes, let us find the dimensions of the container that will minimize the amount of material used. 

 

1.  

 

2. The quantity to be optimized is the surface area of the container. In terms of r and h, 

the surface area is given by the function 
2 22 r rhS p p+= . 

3. As written, the function that gives the surface area depends on both r and h. However, 

since we know the volume of the cylinder is to be 5, and the volume formula is 

2V hrp= , we have the constraint 
2 5r hp = . Solving for h gives 

2

5
h

rp
= . This can be 

substituted into the function S: 
2 2 2

2

5 1
22

0
2 2 2r rh r r r

r r
S p p p p p

p

å õ
+ = + = +æ ö

÷
=

ç
. 

Now S is written in terms of a single variable, r. 

4. Considering the physical situation, it is clear that the domain of interest is 0r > . A 

cylinder cannot exist with 0r ¢ . 

5. Differentiating and setting to zero: 

2

2

3

3

3

10
4

10
4 0

4 10 0

5

2

5

2

dS
r

dr r

r
r

r

r

r

p

p

p

p

p

= -

- =

- =

=

=

 

The derivative is undefined at 0r = , but that is irrelevant since it is not in the 

domain. 
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6. The only critical point is 3
5

2
r

p
= , and the domain of r is ( )0,¤ , so there are no 

endpoints. To justify that this critical point is indeed a minimum, we will use the 

second derivative test. 
2

2 3

20
4

d S

dr r
p= + . Evaluating at 3

5

2
r

p
= , we have 

2

32

3

20
4 12

5

2

d S

dr
p p

p

= + =
å õ
æ ö
ç ÷

. Since 

this is positive, the critical point is indeed a minimum, as desired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Implicitly Defined Curves   

 

When a curve is defined implicitly in an equation involving x and y, the applications of 

derivatives discussed in this section still generally apply. As with explicitly defined functions, 

critical points are determined by examining where 0
dy

dx
=  or is undefined. However, the details 

of finding where this occurs are often more complicated since the expression for 
dy

dx
 usually 

involves both x and y. Second derivatives are often trickier to find as well. Two points are 

helpful: 

 

¶ The derivative of 
dy

dx
 with respect to x is the second derivative of y with respect to x. In 

other words, 

2

2

d dy d y

dx dx dx

å õ
=æ ö

ç ÷
. 

¶ When the expression for 

2

2

d y

dx
 involves 

dy

dx
, it is usually possible to simplify by 

substituting a previously obtained expression for 
dy

dx
. 

Free Response Tip 
 

As in the example provided, many applied optimization 

problems appear to have only one possible solution. Even 

when this is the case, make sure you include a justification 

for this solution being the desired optimal point. The 

Second Derivative Test is often the easiest way to do 

thisðbut keep the First Derivative Test and the Candidate 

Test in mind as well. 
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Example  

 

Suppose 2 2 0x xy+ =. The derivative 
dy

dx
can be found by differentiating with respect to x and 

solving for 
dy

dx
: 

( ) ()2 2 0

2 2 2 1 0

d d
x xy

dx dx

dy
x y x

dx

dy x y

dx x

+ =

+ Ö + Ö =

- -
=

 

 

To find the second derivative, differentiate both sides of this result with respect to x: 

 

()( )()2

2 2

1 11

d dy d x y

dx dx dx x

dy
x

d y dx

dx

x y

x

- -å õ å õ
=æ ö æ

ç

-

ö
÷ ç ÷

å
-- - -

õ
æ ö
ç ÷=

 

 

Now substituting 
x y

x

- -
 for 

dy

dx
: 

()( )()2

2 2 2 2

2
11 1 x

d

x y
x y

x

x x x y x y x y

x x x

y

d

-
å õå õ

-æ öæ ö
ç

=

- -

+÷ç ÷= =

- - -
- + + + +
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Sample Analytical Applications of Differentiation Questions  
 

What is the absolute maximum value of -= 2 2( ) xg x x e  on [ï1, 2]?  

 

A. ï1 

B. 0  

C. e2  

D. eï2 

 

Explanation: 

The correct answer is C. You must first determine all the critical points on the interval [ï1,2].  

Then evaluate g(x) at each of them and identify the largest one as the absolute maximum. The 

endpoints ï1 and 2 are automatically endpoints. To find the others, compute the derivative and 

find where it equals zero: 
- -

-

¡ = - +

=- -

2 2 2

2

( ) ( 2) 2

2 ( 1)

x x

x

g x x e xe

xe x
  

This is equal to zero when any of its factors equals zero, namely x = 0 and x = 1. So, the list of 

critical points is ï1, 0, 1, and 2. Compute g(x) at each of these: 
- -- = = = =2 2 4( 1) , (0) 0, (1) , (2) 4g e g g e g e   

Observe that both g(1) and g(2) are less than 1. So, g(ï1) = e2 is the absolute maximum.  

 

 

 

 

 

 

Suggested Reading 
 

¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 4. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapter 4. 

Boston, MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 4. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapter 4. New York, NY: 

Macmillan.  

¶ Sullivan & Miranda. Calculus: Early Transcendentals. 

2nd Edition. Chapter 4. New York, NY: W.H. Freeman. 
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Suppose f(x) is a twice differentiable function. The graph of y = f¡(x) is as follows: 

 
 

 
 

 

On what intervals is the graph of y = f(x) concave down? 

   

A. ( ) ( )- Ç1,0 2,6   

B. ( ) ( )- Ç ¤4,2 6,   

C. ( ) ( ) ( )-¤ - Ç - Ç ¤, 3 1,0 4,   

D. ( ) ( )-¤ - Ç, 4 2,6   

 

Explanation: 

The correct answer is C. The graph of y = f(x) is concave down on the intervals where the 

graph of y = f¡(x) is decreasing. This occurs when x is in the set ( ) ( ) ( )-¤ - Ç - Ç ¤, 3 1,0 4, . 

 

Suppose f(x) is a function such that f¡(1) = 1, f±(ï2) = f±(1) = 0, and f±(5) does not exist. 

Moreover, the sign of f±(x) is given as follows: 

 

 

 
 

 

Which of these statements must be true? 

 

   (I) f¡(x) is increasing on (1,5). 

   (II)  f(x) has a local maximum at x = 5. 

   (III)  f(x) has an inflection point at x = 1.  
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A. I and II only  

B. I only  

C. I and III only  

D. I, II, and III 

 

Explanation: 

The correct answer is C. I is true because f±(x) = f¡(x))¡ > 0 means f¡(x) is increasing. (II) is false 

because f(x) could have a vertical asymptote at x = 5; in such case, there is no local maximum at 

x = 5. III is true because the sign of f±(x) changes on either side of x = 1 and the point (1, f(1)) 

must exist because f¡(1) is assumed to exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

Integration and Accumulation of Change 
 

Around 17ï20% of the questions on your exam will cover Integration and Accumulation of 

Change. 

 

Riemann Sums and the Definite Integral  
 

When a function represents a rate of change, the area between the graph of the function and the 

x-axis represents the accumulation of the change. If the area is above the x-axis, the accumulated 

change is positive, whereas if the area is below the x-axis, the accumulated change is negative. 

 

More generally, the accumulation of a function on a closed interval [ ],a b , represented 

graphically by the area between a function and the x-axis, is called the definite integral of the 

function on that interval, and is denoted ( )
b

a
dxf xñ . 

 

For simple functions, the definite integral can often be evaluated geometrically. 

 

Example  

 

To evaluate 
4

1
( 3)x dx
-
-ñ , draw a picture: 

 

 
 

The area between the curve and the graph is divided into two triangles. The larger triangle has an 

area of 8. However, it is below the x-axis, so the accumulation is of negative values. Therefore, it 
contributes a value of 8-  to the integral. The smaller triangle accumulates positive values and 

has an area of 
1

2
. Together, we have 

4

1

1
( 3

15

2
) 8

2
x dx

-
- +=-- =ñ . 
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Definite integrals can be approximated using a variety of sums, each term of which represents 

the area of a rectangle over a small subinterval. To begin, consider a function ( )f x  over the 

interval [ ],a b , and let n be the number of equally sized subintervals into which it is split. Then

b a
x

n

-
D =  is the width of each subinterval, and 

ix a i x= + D is the left endpoint of the i th 

subinterval. If a rectangle is constructed on each subinterval so that its height is equal to the 

value of )( if x , the sum of the areas will be ( ) () ( )( )0 1 1n xf x f x f x-+ + + D. This sum is called 

a left Riemann sum. 

 

The notation 
1

n

i

i

a
=

ä  stands for the sum
1 2 na a a+ + +. The left Riemann sum can be written 

using this notation as ()
1

0

n

i

i

f x x
-

=

Dä . Other commonly used approximations are the right Riemann 

sum, and the midpoint Riemann sum, shown as follows: 

 

 

Left Riemann sum Right Riemann sum Midpoint Riemann sum 

()
1

0

n

i

i

f x x
-

=

Dä  ()
1

n

i

i

f x x
=

Dä  

1
1

0 2

n
i i

i

x
f x

x-
+

=

+å õ
Dæ ö

ç ÷
ä  

 

 

As n increases in size, each of these Riemann sums become a more accurate approximation of 

the definite integral. When the limit is taken as n­¤, any of these sums become equal to the 

definite integral. In other words, the integral of a function f over the integral [ ],a b  can be 

defined as 

1

0

( ) lim )(
n

b

i
a n

i

f x xdx f x
-

­¤
=

D= äñ , provided this limit exists. 

 

In fact, although 
b a

x
n

-
D =  is the most common way to divide an interval into subintervals, all 

of the above sums can be computed with potentially different xD values for each subinterval. 

The limit of the sum is still equal to the definite integral. 

 

Another expression that can be used to approximate the definite integral is a trapezoidal sum, 

which represents the areas of trapezoids, rather than rectangles, constructed over the 

subintervals. The trapezoidal sum is ( )0 1 2 1) 2 ( ) 2 ( ) 2 ( ) ( )(
2

n n

x
f x f x f x f xf x -

D
+ + + + + . 
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Properties of the Definite Integral  
 

The definite integral satisfies several properties: 

 

¶ ( )
b

a
b acdx c= -ñ , for any constant c 

¶ (( ) )
b b

a a
xc ff x dx dc x=ñ ñ  

¶ [ ]( ) ( ) ( ) ( )
b b b

a a a
f xxx g x dx f x d g x d° = °ñ ñ ñ  

¶ ( ) 0
a

a
f x dx=ñ  

¶ ( ) ( )
b a

a b
f x dx f x dx=-ñ ñ  

¶ ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +ñ ñ ñ  

 

Example  

 

Suppose 
7

1
( ) 9f x dx=ñ  and 

1

4

( ) 12f x dx=ñ . Find ( )
4

7
( ) 3 dxf x -ñ . 

 

First, we have ( )
4 4 4

7 7 7
( )) 3 ( 3dx f x dx dxf x = --ñ ñ ñ. The latter integral is simply ( )3 4 7 9- =-. 

For the former: 

 
4 1 4

7 7 1

7

1

( ) ( ) ( )

( ) 12

9 12

3

f x dx f x dx f x dx

f x dx

= +

=- +

=- +

=

ñ ñ ñ

ñ  

Free Response Tip 
 

Free response questions often give values of a function in a table. 

A Riemann sum can be used to approximate its integral using the 

subintervals shown in the table, even if the intervals are not all the 

same length. The length of each subinterval is the distance 

between consecutive x-values, and the height of the rectangle on 

that subinterval is the y-value associated with either the left x (in 

case of a left Riemann sum) or the right x (in case of a right 

Riemann sum). In either case, your sum should have one fewer 

term than there are points given in the table. 
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The answer is then ( )
4

7
( ) 3 3 ( 9) 12f x dx- = - - =ñ . 

 

 
Accumulation Functions and the Fundamental Theorem of Calculus  
 

A function can be defined in terms of a definite integral: ( ) ( )
x

a
g x f t dt=ñ . The first part of the 

Fundamental Theorem of Calculus states that the derivative of this function at a given point is 

equal to the value of the function being accumulated. That is, ( )( ) ( ) ( )
x

a
g

d
x f t dt f x

dx
¡ = =ñ . 

Since ( ) ( )
a x

x a
f t dt f t dt=-ñ ñ , we also have ( ) ( )( ) ( ( ))

a x

x a

d

x
f t dt d

d
f x

dx d
f t t=- =-ñ ñ . If the 

upper limit of integration is a function of x, the chain rule can be applied along with the 

fundamental theorem. 

 

 

Example  

 

If 

2

2
( ) sin

x

f x t dt=ñ , then 
2( ) sin( ) 2x x xf¡ = Ö 

 

Antiderivatives and the Fundamental Theorem of Calculus  

 

If ( ) ( )g x f x¡ = , g is said to be an antiderivative of f. Note that if C is any constant, then 

[ ]( ) ( ) 0 ( )
d

g x C g x f x
dx

+ = ¡ + =, so that ( )g x C+ is also an antiderivative of f. In fact, all 

antiderivatives of a given function have this relationship with each other: they differ only by a 

constant. Every continuous function f has an antiderivative, since the function ( ) ( )
x

a
g x f t dt=ñ  

satisfies ( ) ( )g x f x¡ =  and is therefore an antiderivative of f. 

 

The second part of the Fundamental Theorem of Calculus states that if f is continuous on the 

interval [ ],a b , and F is any antiderivative of f on that interval, then ( ) ( ) ( )
b

a
f x dx F b F a= -ñ . 

This fact means that antiderivatives and integrals are very closely related. Because of this, an 

antiderivative is also called an indefinite integral, and is denoted ( ) ( )f x dx F x C= +ñ , where F 

is any antiderivative. 
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Basic Rules of Antiderivatives  

 

Since finding an antiderivative is the inverse process of finding a derivative, the rules for 

derivatives can be reversed to find antiderivatives. 

 

 

f(x) ( )f x dxñ  

nx  11

1

nx C
n

+

+
+  

xe  
xe C+  

1

x
 

ln x C+  

sinx  cosx C- +  
cosx  sinx C+  

2sec x  tanx C+  

sec tanx x secx C+  
csc cotx x cscx C- +  

2csc x  cotx C- +  

 

Integration by Substitution  

 

Substitution, also known as change of variables, is a technique for finding antiderivatives and is 

analogous to the chain rule for derivatives. It works by noting that 

( ( )) ( ) ( ( ))f g x g x dx f g x C¡ ¡ = +ñ . The technique, then, requires recognizing the ( )g x  and ( )g x¡  

in the expression being integrated. 

 

If ( )u g x= , then ( )x dxdu g¡= , so the integral can be written ( ) ( )f u du f u C= +ñ . 

 

When using this technique with definite integrals, it is important to translate the limits of 

integration to be in terms of the new function u. 

 

Example  

 

The integral 2

/2
cos sin d

p

p
q q qñ  can be evaluated by substituting sinu q= . Then cosd du q q= . 

When 
2

p
q= , sin 1

2
u

p
= = , and when q p= , sin 1u p= =-. The integral becomes 

0
0

2 3

1
1

1 1 1

3 3 3
0u u ud é= =

è ø
=-ù -

ê ú
ñ . 
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Integration by Parts  

 

Integration by parts is another technique for finding derivatives and is the antidifferentiation 

analogue to the product rule for derivatives. The rule states that dv uv duu v= -ñ ñ. The key in 

applying it is choosing useful expressions for u and dv. The acronym LIPET can help you 

prioritize the expression chosen for u: Logarithm, Inverse trigonometric, Polynomial, 

Exponential, and Trigonometric. More generally, u should be an expression that will become 

simpler when differentiated, and dv should be an expression for which you can easily find an 

antiderivative. 

 

Example  

 

Consider 
1

0

xxe dxñ . By setting u x=  and xdv e dx= , we can find du dx=  and 
xv e= . Then, 

using the integration by parts rule (and temporarily ignoring the limits of integration), the 

integral becomes 
x x x x xx xe dx xe e ee= - = -ñ ñ . The answer to the original integral is 

( )( )
1

1 1 0 0

0
1 0 1x xxe e e e e e=è ø- - - - =ê ú . 

 

Note that it is possible that the integral vduñ  obtained when integrating by parts itself requires 

another integration by parts. 

 

 

Other Integration Techniques  
 

If the numerator of a rational function has a degree that is at least as high as the degree of the 

denominator, long division is often helpful in integration. 

 

Example  

 

Consider 

3

1

x x
dx

x

+

-ñ . Since the numerator has a higher degree than the denominator, long 

division can be applied to transform the integral. We get 

3
2 2

2
1 1

x x
x x

x x

+
= + + +

- -
, so that the 

answer is 3 21 1
2 2ln 1

3 2
x x x x C+ + + - +. 

 

Another technique that can be useful for some integrals is completing the square. 
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Integration by Partial Fractions   

 

If a rational function does not lend itself well to long division, it is possible that it can be 

decomposed into a sum of multiple terms, each of which can then be integrated. The AP exam 

only covers situations in which these terms have nonrepeating linear factors. The general 

technique is illustrated in the following example. 

 

 

Example  

 

The rational function 
2

9

3 10

x

x x

+

- -
 is not a candidate for long division, and the substitution 

2 3 10u x x- -=  does not yield anything useful, since then 2 3du x= -. Instead, we will 

decompose it into partial fractions. 

 

To begin, note that the denominator factors as ( 5)( 2)x x- + . We would like to find A and B such 

that 
2

9

3 10 5 2

x A B

x x x x

+
= +

- - - +
. Multiplying both sides of this equation by ( 5)( 2)x x- + , we get 

9 ( 2) ( 5)x A x B x+ = + + -. Substituting 2x=- gives 7 7B=- , so 1B=-, and substituting 

5x=  gives 14 7A= , so 2A= . Thus, we have found that 
2

9 2 1

3 10 5 2

x

x x x x

+
= -

- - - +
. 

 

The integral of the original expression can now be found: 

2

9 2 1
2ln 5 ln 2

3 10 5 2

x
dx dx x x C

x x x x

+ å õ
= - = - - + +æ ö

- - - +ç ÷
ñ ñ  

 

 

Improper Integrals   

 

If an integral has °¤ and has one or both of the limits of integration, it is called an improper 

integral. An improper integral of this type can be evaluated as the limit of a standard definite 

integral. If the limit exists, we say that the integral converges to the value of the limit; otherwise, 

the integral diverges. 

 

Example  

 

0

xe dx
¤
-

ñ  is evaluated as 
0

lim
a

x

a
e dx-

­¤ñ . The antiderivative of 
xe- is 

xe-- , the expression becomes 

( )0
0

lim 0 1 1
a

x a

a
e e e- -

­¤
è ø = + =ê - -ú- =- . The integral converges and has a value of 1. 

 

Another type of improper integral occurs when the integrand is unbounded within the interval of 

integration. This will usually be due to a vertical asymptote. Here too the integral is evaluated 

using the limits of standard integrals as the limits of integration approach the discontinuity. 
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Sample Integration and Accumulation of Change Questions  

 

Compute ( )ñln x dx . 

A. +2
3

x C   

B. +1
2

lnx x C   

C. ( )- +1
2

lnx x x C   

D. +1
x

C   

 

Explanation: 

The correct answer is C. First, use the logarithm properties to write ( )ln x  as 1
2
ln x .  Then, 

( ) =ñ ñ
1
2

ln lnx dx x dx . To compute ñln x dx , use the integration by parts formula 

= -ñ ñu dv uv v du  with  

= =

= =1

ln

x

u x dv dx

du dx v x
 

Doing so yields 

= - Ö

= -

= - +

ñ ñ

ñ

1ln ln

ln 1

ln

x
x dx x x x dx

x x dx

x x x C

 

 

Suggested Reading 
 

¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapters 5-7. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: Early 

Transcendental Functions. 7th edition. Chapters 5 and 8. 

Boston, MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapters 5 and 7. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals Single 

Variable. 4th edition. Chapters 5 and 7. New York, NY: 

Macmillan.  

¶ Sullivan & Miranda. Calculus: Early Transcendentals. 2nd 

Edition. Chapters 5 and 7. New York, NY: W.H. 

Freeman. 
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So:  

( )
( )

( )

( )

=

= - +

= - +

= - +

= - +

ñ ñ
1
2

1
2

1 1
2 2

1 1
2 2

1
2

ln ln

ln

ln

ln

ln

x dx x dx

x x x C

x x x C

x x x C

x x x C

  

 

The graph of y = f(t) is given below: 

 

 

 
 

 

Define the function 
-

= ²-ñ4
( ) ( ) , 4

x
A x f t dt x . At what x-value does A(x) = 0?    

A. 3 

B. 4 

C. 5 

D. 6 

 

Explanation: 

The correct answer is D. Use the geometric formulas for area of rectangles and triangles.  

Observe that A(0) = 2(2) + ½(2)(2) = 6 square units. So, 
-

=ñ
0

4
( ) 6f t dt . Now you must determine 

a value of x > 0 such that the area that lies under the t-axis is 6 square units. To this end, observe 

that  



 43 

= =

=- =-

= - =-

= - =-

ñ ñ

ñ

ñ

ñ

1 1

0 0

3
1
21

4

3

6

4

( ) 0 0

( ) (2)(2) 2

( ) ( 1)(2) 2

( ) ( 1)(2) 2

f t dt dt

f t dt

f t dt

f t dt

  

So, by interval additivity,  

- -
= = + + + + =ñ ñ ñ ñ ñ ñ

6 0 1 3 4 6

4 4 0 1 3 4
(6) ( ) ( ) ( ) ( ) ( ) ( ) 0A f t dt f t dt f t dt f t dt f t dt f t dt . 

 

 

If 
-=ñ2

1 1( ) tan ( )
x

f x t dt , compute 
å õ
¡æ ö
ç ÷

4

1

3
f .   

A. 
p

-
4

3 3
 

B. 
+

3

1 3
 

C. -
+

3 1

21 3
 

D. 
p p
-

44 3 3
 

 

Explanation: 

The correct answer is A. First write the integral so that the upper limit is the variable expression 

by flipping the limits and multiplying the integral by ï1.  

- -= =-ñ ñ
2

2

1 1 1

1
( ) tan ( ) tan ( )

x

x
f x t dt t dt   

Now use the fundamental theorem of calculus with the chain rule to differentiate f(x): 

( )-¡ =- Ö1 2( ) tan 2f x x x   

Now compute 
å õ
¡æ ö
ç ÷

4

1

3
f : 
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p

p

-

-

å õå õ å õ å õ
æ ö¡ =- Öæ ö æ ö æ ö
æ öç ÷ ç ÷ ç ÷ç ÷

å õ-
= æ ö

ç ÷

-
= Ö

-
=

2

1

4 4 4

1

4

4

4

1 1 1
tan 2

3 3 3

2 1
tan

3 3

2

63

3 3

f
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Differential Equations 
 

About 6ï9% of the questions on your exam will cover Differential Equations. 

 

Introduction to Differ ential Equations  

 

A differential equation is an equation that involves a function and one or more of its derivatives. 

The solution to a differential equation is a function that satisfies the equation 

 

A differential equation may have infinitely many solutions parameterized by a constant; this is 

called the general solution to the equation. If additional information is given, the constant can be 

determined. This additional information comes in the form of an initial condition; that is, a value 

0 0)(f x y= that must be satisfied by the solution. 

 

Example  

 

Consider the differential equation y y¡¡=- with initial condition 7
2

y
på õ
=-æ ö

ç ÷
. Any function of 

the form siny C x=  is a general solution to this equation since ( )
2

2
sin sin .

d
C x C x

dx
=-  Using 

the initial condition given, we have sin
2

7 C
p

- = , so we can solve to find 7C=-. The solution 

to the equation is 7siny x=- . 

 

Slope Fields 
 

A slope field is a graphical representation of a differential equation. At each of finitely many 

points in some section of a plane, a short line is drawn representing the slope of a function. This 

represents a differential equation whose solution is the function whose slopes are being drawn. 

 

Example  
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The slope field shown represents the differential equation 2
dy

x
dx
= . The solutions to this 

equation are the functions 2y Cx= + , as can be seen in the shapes formed by the slopes shown. 

 

 
Euler's Method  

 

Eulerôs Method is a technique for approximating a value of the solution to a differential equation 

given an initial condition. It works by following the slope defined by the differential equation for 

a series of short intervals, called steps, starting at the initial condition. 

Given an initial point ( )0 0,x y , and step size xD , successive points ( ),n nx y  for 1n² are found 

using the equations
1n n xx x-= +D  and 

( )1 1

1

,n n

n n

x y

dy
y y x

dx
- -

-= +D Ö . This process continues until the 

desired point is reached. 

 

Example  

 

Given 2 1
dy

xy
dx
= + with initial condition (0,1), we will approximate (1)y  using two steps of 

equal size. 

 

Since x has to move from 0 to 1 with 2 steps, we have 0.5xD = . We have ( )0 0, (0,1)x y = , so 

1 0 0.5 0.5x = + =  and ( )1 1 0.5 2(0)(1) 1 1.5y = + + =. Continuing to the next step, we get 

2 0.5 0.5 1x = + = and ( )2 1.5 0.5 2(0.5)(1.5) 1 2.75y = + + = . Our estimate for y(1) is 2.75. 

 

Separation of Variables  
 

A certain class of differential equations, called separable equations, can be solved using 

antidifferentiation. The technique requires separating the variables so that each is represented 

only on a single side of the equation. Integrating both sides of the equation then produces a 

general solution. If an initial condition is provided, it can be used to find a particular solution. 

When integrating, it is only necessary to include a constant C on one side of the equation. 

 

Example  

 

Consider the differential equation 26
dy

y t
dt
=  with initial condition (1) 1y = . To solve this, we 

begin by separating the variables: 2

1
6dy t dt

y
= . Integrating both sides, we have: 

2

2

1 1
6 3t t Ct

y y
dy d Ý == +-ñ ñ  
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This gives a general solution, although it is implicitly defined. We can solve for y to make it 

explicit, but it is often advisable to first use the initial condition to solve for C. In this case, 

substituting the initial values results in C = ï4.  

 

 

Using this value and solving for y, we can obtain the explicit solution: 

 

2

2

2

1
3

1

3 4

1

3 4

4

t

y

t
y

t

y

=

-

-
=

- -

-

-

=  

 

 
Exponential Models  

 

Many applications of differential equations involve an exponential growth or decay model. This 

model occurs in any situation in which the rate of change of a quantity is proportional to the 

quantity. As an equation, this is represented by 
dy

ky
dt
= . This equation is easily solved using 

separation of variables, and the general solution is 
0

kty y e= , where 
0y  is the value of y when  

t = 0. 

 

Example  

 

The rate of growth in a bacteria culture is proportional to the number of bacteria present. A 

certain culture starts out with 200 bacteria, and after 2 hours there are 1,000. Let us find the 

number of bacteria present after 5 hours. 

 

To begin, note that since this follows exponential growth with a starting value of 200, the 

population is modeled by the equation 200 kty e= . To solve for k, use the fact that after 2 hours 

there are 1000 bacteria: 
2

2

2

1

l

00

5

n5

0 200 t

t

e

e

t

=

=

=

 

We can now rewrite the model as 
ln5

2200
t

y e= . The population after 5 hours is 
5ln5

2 11180200e º . 
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Logistic Models  

 

The logistic model is a population model defined by the differential equation ( )
dy

ky M y
dt
= - , 

where M is called the carrying capacity. Alternatively, this can be written 1
dy y

ky
dt M

å õ
= -æ ö
ç ÷

.  

 

 

Note that the value of k will  be different depending on which form of the equation is used. The 

solution to this differential equation is called a logistic curve, and resembles the following graph: 

 

 

 
 

The following facts about the logistic function ( )y t are important: 

 

¶ ( )y t  is increasing for all real numbers 

¶ ( )y t M<  for all real numbers t 

¶ lim ( )
t

y t M
­¤

=  

¶ The y-coordinate of the inflection point of ( )y t  is 
2

M
. At this point, the function 

changes from concave up to concave down, and it is also the point of greatest growth 

rate. 
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Sample Differential Equations Questions  
 

What is the general solution of the differential equation ¡ =2 4 ( )( )x y xe y x e ? 

A. 
-

å õ
= æ öæ ö

+ç ÷
4 2

1
( ) ln

2 x
y x

e C
  

B. ( )-=- +21
4

( ) ln xy x e C   

C. ( )= - +
4 2( ) ln 2 xy x e C   

D. ( )=- +21
4

( ) ln 2 xy x e C   

 

Explanation: 

The correct answer is A. Separate variables by getting the y-terms on one side and the x-terms 

on the other. Then integrate both sides and solve for y: 

Suggested Reading 
 

¶ Hughes-Hallett, et al. Calculus: Single Variable. 7th 

edition. Chapter 11. New York, NY: Wiley. 

¶ Larson & Edwards. Calculus of a Single Variable: 

Early Transcendental Functions. 7th edition. Chapter 

6. Boston, MA: Cengage Learning. 

¶ Stewart, et al. Single Variable Calculus. 9th edition. 

Chapter 9. Boston, MA: Cengage Learning. 

¶ Rogawski, et al. Calculus: Early Transcendentals 

Single Variable. 4th edition. Chapter 9. New York, 

NY: Macmillan.  

¶ Sullivan & Miranda. Calculus: Early 

Transcendentals. 2nd Edition. Chapter 16. New York, 

NY: W.H. Freeman. 
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( )

( )

( )

- -

- -

- -

- -

-

-

-
-

-

¡ =

=

=

=

=

- =- +

= +

- = +

=- +

= +

å õ
= æ öæ ö

+ç ÷

ñ ñ

1
4

2 4 ( )

2 4

2 4

4 2

4 2

4 21 1
4 2

4 2

2

21
4

2

4 2

( )

2

4 ln 2

ln 2

ln 2

1
ln

2

x y x

x y

x y

y x

y x

y x

y x

x

x

x

x

e y x e

dy
e e

dx

e dy e dx

e dy e dx

e dy e dx

e e C

e e C

y e C

y e C

y e C

y
e C

  

 

 

The rate at which a population of gray squirrels, P(t), in a state park changes over time is 

governed by the differential equation 5 2 1
4 16

dP P P

dt

å õå õ
= - -æ öæ ö
ç ÷ç ÷

 . Here, P(t) is measured in 

thousands of squirrels and t is measured in months. For which of the following initial population 

measurements 
0(0)P P=  would the population of gray squirrels theoretically increase 

exponentially?  

 

A. (0) 20P =   

B. (0) 16P =   

C. (0) 10P =   

D. (0) 4P =   

 

Explanation: 

The correct answer is A. The equilibrium populations occur when 0
dP

dt
= . Setting the right 

side of the differential equation equal to zero yields P = 8 and P = 16.  
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The corresponding slope field for this equation would look like the following: 

 

 
 

So, for any initial population P(0) larger than 16, the population would increase exponentially. 

So, in particular, if P(0) = 20, this is the case.  

 

 

 

Use Eulerôs method with time step h = 0.25 and n = 2 steps to approximate the solution of the 

initial-value problem 
( ) ( )

(0) 2

y t y t t

y

¡ = +ë
ì

=í
 at time t = 0.5.  

A. 2.500 

B. 3.188 

C. 4.109 

D. 8.250 

 

Explanation: 

 

The correct answer is B. In the notation of Eulerôs method, we have: 

  

() ( )

() ( )

1 1 0 0 0

2 2 1 1 1

,

,

y t y y h f t y

y t y y h f t y

= = +

= = +
  

 

where  

 

0

0 1 2

2, 0.25,

0, 0 0.25, 0 2(0.25) 0.5

( , )

y h

t t t

f t y y t

= =

= = + = + =

= +
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Observe that  

1 1

2 2

( ) 2 0.25(2 0) 2.5

( ) 2.5 0.25(0.25 2.5) 3.1875 3.188

y y t

y y t

= = + + =

= = + + = º
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Applications of Integration 
 

About 6ï9% of the questions on your AP exam will cover Applications of integration. 

 

Average Value  
 

If f is continuous on the interval [ ],a b , then the average value of f on that interval is 

(
1

)
b

a
f x dx

b a- ñ
. If f is nonnegative on the interval, the average value of the function has a 

simple graphical interpretation: it is the height a rectangle over the interval would have to be to 

have the same area as exists between the x-axis and the function. 

 

 

Position, Velocity, and Acceleration  
 

When a particle is moving along a straight line, its motion can be modeled using derivatives, as 

discussed earlier. The theory and techniques of integration now allow us to extend this 

description with the following two points: 

¶ The displacement of the particle over the time interval [ ]1 2,t t  is given by 
2

1

( )
t

t
v t dtñ , where 

( )v t  is the velocity of the particle. 

¶ The total distance traveled by the particle over the time interval [ ]1 2,t t  is 
2

1

( )
t

t
v t dtñ . 

Recall that ( )v t  is the speed of the particle at time t. 

 

 

Accumulation Functions in Context  
 

The net change of a quantity over an interval can be found by integrating the rate of change. This 

is an important fact that can be used in a variety of applications. 

 

Example  

 

A tank of water contains 53 gallons at 8:00 AM. Between 8:00 AM and 12:00 PM, water leaks 

from the tank at a rate of ( ) 3 sinL t t= , where t is the number of hours since 8:00 AM, and L is 

measured in gallons per hour. How much water is remaining in the tank at 12:00 PM? 

 

To solve this, we need to consider two quantities: the amount of water that the tank has at 8:00 

AM, and the total amount of water that leaks from the tank between the hours of 8:00 AM and 

12:00 PM. The first quantity is given as 53. The second quantity is the accumulation of the rate of 
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leaking over the four hours. Therefore, the amount of water remaining in the tank at 12:00 PM is 
4

0
65 i 43 3 s nt dtº-ñ  gallons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area Between Curves  

 

If )( ()f gx x² on the interval [ ],a b , then the area between f on g between a and b is 

[ ]( ) ( )
b

a
dxf x g x-ñ . If the two functions intersect on an interval, the integral needs to be split into 

multiple subintervals, so that along each section the functions can be subtracted in the proper 

order. 

 

Example  

 

Let us find the area in the first quadrant bound by the graphs of 
2

(
1

)f x x= , 
2( )g x x= , and the 

line x = 1. This is represented in the following graph: 

 

 

Free Response Tip 
 

Pay attention to units in free response questions, as they are 

often required to be correct to receive full credit. Remember 

that the units of 
dy

dx
 are the units of y over the units of x, and 

the units of ( )
b

a
f x dxñ  are the units of y times the units of x. 

When the units of y are a rate of change over time, and the 

units of x represent time, the units of the integral end up being 

equivalent to whatever quantity is changing. 
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The graphs cross at 
1

2
x= , so we will need to evaluate the two regions separately. The first 

region has area 
1/2

2

0

1 1

2 48
x x dx

å õ
- =æ ö

ç ÷
ñ , and the second region has area 

1
2

1/2

1 5

2 48
x x dx
å õ

=æ
ç ÷
- öñ . 

The total area is 
1 5 1

48 48 8
+ =. 

 

When curves are given as functions of y instead of x, the area between them can be found using 

the same technique. Instead of the integrand being the function on top minus the function on 

bottom, it is the function on the right minus the function on the left. 

 

 
Volumes with Cross Sections  
 

When a solid can be described in terms of its base and cross-sectional shapes, the volume of the 

solid can be computed by integrating the area of the cross sections along an appropriate interval. 

If the cross sections described are perpendicular to the x-axis, the volume is given by 

( )
b

a
V A x dx=ñ , where ( )A x  is the area of the cross section in terms of x. If the cross sections are 

perpendicular to the y-axis, the integral is with respect to y: ( )
b

a
V dyA y=ñ . 

 

Shapes commonly used as cross sections include squares, rectangles, right triangles, equilateral 

triangles, and semicircles. 

 

Example  

 

The base of a solid is the region in the first quadrant of the xy-plane bounded by y x=  and the 

vertical line x = 4, shown as follows. Cross sections of the solid taken perpendicular to the y-axis 

are semicircles with the diameter lying in the region given. 

 

 

 


