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Key Exam Detalls

The AP® CalculusBC exam is a dhour 15minute, enebf-course test comprised of 45 multiple
choice questions (50% of the exam) and 6-firesponse questions (50% of the exam).

The exam covers the following caar content categories:

Limits and Continuity: #7% of test questions

Differentiation: Definition and~undamental Propertie$ 7% of test questions
Differentiation: Composite, Implicit, and Inverse Functigtig% of test questions
Contextual ApplicationsfdDifferentiation: 6 9% of test questions

Analytical Applications of Differentiation8i 11% of test questions

Integration and Accumulation of Change:i 20% of test questions

Differential Equations: 89% of test questions

Applications of Integration6i 9% of test questions

Parametric Equations, Polar Coordinates, and Vedatwed Functions: 1i112% of test
guestions

1 Infinite Sequences and Seriesi 18% of test questions

= =4 -_8_-9_48_-9_2a_-42_-2

This guide offes an overview of the main tested subjects, along with sample AP hesttimice
guestions that look like the questions @beee on test day.

Limits and Continuity

About 457% of the questions on your exam will cover Limits and Continuity.

Limits
The limit of a functionf asx approaches is L if the value off canbe made arbitrarily close 1o

by taking x sufficiently close toc (but not equal ta). If such a value exists, this is denoted
lim f(x) = L. If no such value exists, we say that the limit does not exist, abbreviated DNE.
X- C

Limits can be foud using tables, graphs, and algebra.

Important algebraic techniques for finding limits include factoring and rationalizing radical
expressions. Other helpful tools are given by the following properties.

Supposeli_m f(x)=L, Ii_m g(x) =M, Ii_mL h(x) = N, andais any real number.




Then

1 IXi_ng[f(x)+g(x)] =L M

1 Ixi_nl[f(x)- g(¥] =L ™

T lim[af(x]=aL

q Iimw=£,aslongasr\/l 0
xeg(x) M ’

T limh(f(x)=N

For manycommon functions, evaluating limits requires nothing more than evaluating the
function at the point (assuming the function is defined at the point). These include polynomial,
rational, exponential, logarithmic, and trigonometric functions.

Two specialimits that are important in calculus are 2% =1 and Jim
x-0 X x- 0

1- cosx _
X

0.

One-Sided Limits

Sometimes we are interested in the value that a funttmproaches asapproaches from

only a single direction. If the values det arbitrarily close th asx approaches while taking

on values greater than we saylim f(x) = L. Similarly, ifxis taking on values less thapwe
X- C

write lim f(x)=L.

We can now characterize limits by saying tllaz f(X) exists if and only if botriin;[ f(xX) and
lim f(Xx) exist and have the same value. A limit, then, can fail to exist in a few ways:
) C‘ﬂ lIITC] f(x) does not exist

1 llng f(X) does not exist

1 Both of the onesided limits exist, but have different values




Example

The function shown has the following limits:

1 Iirr;ﬁ f(x)= 4
1 Xl_i@ f(x)=1
q Er-pzf(x) DNE
1 llns f(x)=4
1 lenl”l f(x)=4
1 lerq f(x)=4

Note thatf(1) = 3, but this is irrelevant to the value of the limit.

Infinite Limits, Limits at Infinity, and Asymptotes

When a function has a vertical asymptote aftc, the behavior of théunction can be described
using infinite limits. If the function values increase as they approach the asymptote, we say the
limit is B, whereas if the values decrease as they approach the asymptote, thefiniitis
important to realize that theserits do not exist in the same sense that we described earlier;
rather, saying that a limiti§ Fis simply a convenient way to describe the behavior of the
function approaching the point.

We can also extend limits by considering hib function behaves as- ° &. If such a limit
exists, it means that the function approaches a horizontal lmea®ases or decreases without
bound. In other words, ifim f(x) =L, thenf has a horizontal asymptotg= L. It is possible for

a function to have two horizontal asymptotes since it can have different linkts a8 and
X- - K




The Squeeze Theorem

The Squeeze Theorem states that if the godighfunction lies between the graphs of two other
functions, and if the two other functions share a limit at a certain point, then the function in
between also shares that same limit. More formallyf, (k) ¢ g(x) d(X for all xin some

intervd containingc, and iflim f(X) =lim H( ¥ =L, thenlim g(x) = L as well.
Example

. . . . .al o, .
The sine function satisfies1¢ sinx ¢l for all real numberx, so-1¢ sm% 8(11 is also true
for all real numbersc. Multiplying this inequality byx*, we obtain- x* ¢ xzsingl§1 8¢x2. Now

the functions on the left and right of the inequalixy,and - x*, both have limits of 0 ag- 0.

Therefore, we can conclude tHa‘n x?sin % 5 0 also.
G

Continuity
The functionfis said to be continuous at the point c if it meets the following criteria:

1. f(c) exists
2. lim f(x) exists

3. lemC f(x)= f(¢)

In other words, the function must have a limitaand the limit must be the actual value of the
function.

Each of the above criteria can fail, resulting in a discontinuity=at. Consider the following
three gaphs:

/ C

7




In graph A, the function is not definedatin graph B, the function is definedatbut the limit
as x- c does not exist due to the essled limits being different. In graph C, the function is
defined at and the limit asx- c exists, but they are not equal to each other.

The discontinuity in graph B is referred to as a jump discontinuity, since itis caused by the graph
jumping when it reaches= c. In contrast to this is the sitian in graph C, where the

discontinuity could be fixed by moving a single point; it occurs whenever the second condition
above is satisfied and is called a removable discontinuiﬂgmclff(x) exists, butf has a

discontinuity atx = c because it fails one of the other conditions, the discontinuity can be
removed by defining or redefinirf§c) to be equal to the limit at that point.

A function is continuous on an interval if it is continuous at every point in the interval. The
following categories of functions are continuous at every point in their respective domains:

Polynomial
Rational
Power
Exponential
Logarithmic
Trigonometric

E

If fis a piecewisalefined function with continuous component functions, then checking for
continuity conssts of checking whether it is continuous at its boundary points. Continuity at a
boundary point requires that the functions on both sides of the point give the same result when
evaluated at the point.

Intermediate Value Theorem

The Intermediate Value Elorem applies to continuous functions on an inte[aaﬂ;]. If dis any

value betweeif(a) andf(b), then there must be at least one numbleetweera andb such that
f(c) =d.

Example

Consider f (X) = € - 2, which iscontinuous everywhere. We hafg0)=€’- 2 = 1, andf(1) =
el 2, which is certainly positive. If we take =0 in the statement of the theorem, tretis
betweerf(0) andf(1). Therefore, the Intermediate Value Theorem gui@es at least one valcie
between 0 and 1 with the property thifc) =0. This value, of course, is=In2.




Suggested Reading

HughesHallett, et al.Calculus: Single Variabler™
edition Chapter 1New York, NY: Wiley.

Larson & EdwardsCalculus of a Single Variable: Early
Transcendental Functiong™" edition. Chapter 2Boston,
MA: Cengage Learning.

Stewart, et al.Single Variable Calculu®™ edition.
Chapter 2Boston, MA: Cengage Learning.

Rogawskj et al.Calculus: Early Transcendentals Singlg
Variable. 4" edition. Chapter 2New York, NY:
Macmillan.

Sullivan & Miranda.Calculus: Early Transcendéals. 2"
Edition. Chapter 1. New York, NY: W.H. Freeman.

Sample Limits and Continuity Questions

Consider the following graphs bandg:

Ay fx) AY

+ 3 o0—> +3 @

T2 T+ 2 gix)
L 1 = 1

o324 /12 3 x
«—O0—F -1
- -2 -2
- =3 + -3

Computelim [3f(x)- g(®)], provided the limit exists.
x- 2°

A. Does not exist
B.4
C.6
D.7

Explanation:

The correct answer is DFirst, use linearity to write:

im [3f(9- g(¥] Blim (3 #m o .




Now, observe thalim f(x) =3 and lim g (x) =2. Substitutingthese values above yields
x- 2¢ x- 2°F

im [3f(9- g(x] Blim f(3 Im ¥ 3@) 2 -7.

Suppose thatf (x) = 2cog(4 x) and the graph af(x) is given by

Computel!rr}3 f(X) Q( X, provided it exists.
A6
B.4

C.6
D. Does not exist

Explanation:
The correct ansver is C. Use the fact that the limit of a product is the product of the limits,
provided they both exist independently, to compute:

im f0ocy Him_ 13 (16 g x|

(2cog(2 © 3] )( -
(2coq p)) (O
(2)( 3

6

Which of the following limits does not exist?




D. lim secx
X- p°

Explanation:
The correct answer is BRecall that
éx-1, x 21
|x-1]5
il- x,x 4
So,
|x-1]_g1x<1
1-x  {-1x 2
Hence, lim Ix- 1] 1 while lim [x- 1]
x- 1 1- X x- 1 1- X

Lll does not exist.
1- X

=1. Snce these values are different, it follows that

there isa jump at=1 and so]iml




Differentiation: Definition and
Fundamental Properties

About 4 7% of the questions on your AP exam will cover Differertiati Definition and
Fundamental Properties.

Definition of the Derivative

The average rate of change of a functf@ver the interval fronx = ato x=a +his
fa+ h% -1(a) Alternatively, if x=a +h, this can be written X~ (@ \whenhis made
X- a
smaller, so that it approaches 0, the limit that results is called the instantaneous rate of change of
f at x=a, or the derivative ofat x = a, and is denoted j(a).
ki f(x)- f(a) _
xa  X-a
If this limit exists,f is said to be differentiable at Graphically, f j(a) represents thelape ofthe
line tangent to the graph df(x) at the point wherex = a. Therefore, the line tangent fix) atx

=ais y- f(a) =fi(@(x a).

That is, f i(a) km fla+ hk)] -1(3) , or equivalently, f j(a)

If the function y = f(X) is differentiable atll points in some interval, we can define a new
function on that interval by finding the derivative at every point. This new function, called the

derivative off, can be denoted i(X), Vi, or j_y and is defined byf i(x) m f(x+ hr)] -f(X% _
X -

The value of the derivative at a particular paint a can then be denotedij(a) or 3—i

X=a

If fis differentiable atx = a, then it also must be continuous »at a. In other words, if a
function fails to be continuous at a point, it cannot possibly be differentiable at that point.
Another way that differentiability can fail is via the presencshairp turns or cusps in a graph.

Free Response Tip

When specific function values are given, t
derivative at a point can be approximated
finding the average rate of change betws¢
surrounding points. For example, if you g
given values of a function at= 3, 4, and 5, the
the derivative at 4 can be approximated by
average rate of change between 3 and 5.




Basic Derivatives and Rules
There are several rules that can be used to find derivatives. Assunthg are differentiable
functions, anct is a real number.

9 The constant ruleaiczo
X

d '
1 The power rule:d— x" =nx"*, for any real numben
X

! The sum ruIe:%([f(x)+ ag(¥] =f(® o}
I The difference rule:c%([f(x)- a(¥] =f(D gey

§ The constant multiple rule(:%[cf(x)] = cf (%)
X

§ The product ruIe:d%([f(x)g(x)] =f(Mgy fxdx

T The quotient rule:d.€F (9 g fi(o® -f(3 ol ¥

dxgg(® 0 [a(0)]’

As special cases of the power rule, note tga(cx) =c, and di x=1.
X X

In addition to these rules, the derivatives of some common functioras foBows:

X X

e e
In x 1
X

sinx Ccosx
COSX - sinx
tanx seé x
secx secx tarx
cscx - CSCX cotx
cotx |- cséx

([ 10 )
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Suggested Reading

f HughesHallett, et al.Calculus: Single Variabler™"
edition Chaptes 2 and 3New York, NY: Wiley.

1 Larson & EdwardsCalculus of a Single Variable: Early
Transcendental Functiong" edition. Chapter3. Boston,
MA: Cengage Learning.

{ Stewartet al.Single Variable Calculu®™ edition.
Chaptes 2 and 3 Boston, MA: Cengage Learning.

1 Rogawskj etal. Calculus: Early Transcendentals Sing|
Variable. 4" edition. Chapter3. New York, NY:
Macmillan.

1 Sullivan & Miranda.Calculus: Early Transcendentals
2"d Edition. Chapter 2. New York, NY: W.H. Freeman.

Sample Differentiation: Definition and Fundamental Properties
Questions

Boyl eds | aws states that i f a gas i s compre
volume and pressure remains constant; thatRs; K, whereK is a constant. Which of the
following equals the inantaneous rate of change of pressure with respect to volume?

A TK
B.0
C. - KV?
K
D. - vz
Explanation:
The correct answer is DObserve that sincéP = K, it follows thatP = KV™*. Differentiating
both sides with respect 1;t)yieldsE = KV? :—KE.
av V
( ]
L )




An object moves along the curyezi, starting ak :%). As it passes through the point (1,1) its
X

x-coordinate increases at a rate of éhes per second. How fast is the distance between the
object and the origin changing at this ins&am time?

A. 0 inches per second
B. 44/2 inches per second

C. /2 inches per second
D. 12 inches per secdn

Explanation:
The correct answer is A.The position of a point on this curve is of the f@vmy) = ( x,l) . So,

the distancd® between it and the origin is

D=J(x 0 (¥ OF J(x 0°-(}¢ & % #.

While we could differentiate both sides with respedtdaectly, the presence of the radical
makes this inconvenient. So, we square both sides first tBgetx® +x > andnowdifferentiate
both sides with respect toDoing so yields:

2D(;—[t) = ZXE( -2x'39(

dt dt
d_D = XQ( - '39(
dt dt dt

Note that when the objectés the point (1,1), we know that=1, D=+12 42 2, and

%z 2 inches per second. Substituting this information into the above equation yields

\/E?j—[t):l ® 1-2 G

For how many vies ofx in the interval[0, 2p] is the tangent line to the curve
g(X) =secx +cscx parallel to the linex = y?

00>
A WNO

12
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Explanation:
The correct answer is BFirst, use the graphing calculator to grapk) @h [0,2,0]:

'
a
2

Now, reasoning using the continuity of the graph and the vertical asymptotes reveals that there
must be tangent lines toxy(with slope 1 at ong-value in each of the following interval@a,%)

and (p,c).

13
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Differentiation: Composite, Implicit, and
Inverse Functions

About 4 7% of the questions on your exam will cover the topic Differentiation: Composite,
Implicit, and Inverse Functions.

Chain Rule

The chain rule makes fiossible to differentiate composite functions.ylE f(g(X), then the
chain rule states thayj £ (g(X)) g(xL. In alternative notation, if/= f(u) andu=g(X, then
dy _ dy gu

dx du dx

The chain rule can be extended to compositions of more than two functions by considering that
g(X) as described above may itself be a compositioy.3f f (g(h( X)) , two applications of the

chain rule yieldyi % (g(h(x)) 9(t03)i I( X.

Implicit Differentiation and Inverse Functions

A function may sometimes be presented in implicit, rather than explicit, form. That is, it may not
be given asy = f(X), but rather as an equation that relatasdy to each other. In such cases,

we say thay is implicitly defined as a function ok. Implicit differentiationis the process of

finding the derivativeg—y for such functions, and it is accomplished by applytmgdhain rule.
X

Example

Consider the equatiog® +x> #«y 5. Differentiating both sides of the equation with respect to

X, and remembering that we are assuming gt in fact, a function ot (so that the chain rule
applies), we get

d d

&(y3+x3 +Xy @ a?((S)

3 @Y g+t yoxr Y o
dx dx

14
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Note that differentiatingxyrequired an application of the product rule, and that every time an

expression in terms gfwas differentiated, the derivative was multiplied §¥ Now dl of the
X

terms Withﬂ can be gathered on one side of the equation,gé/ndan be solved for:
X

dx
3y? éj! ¥ % y= 3X
dx dx

OI—y(3y2+x) =y 3%

dx
dy_-y 3«
dx 3y +x

This technique can also be applied to find the derivatives of inverse functionsdeZans
invertible functionf, with inverse f *. By definition this means that ( f '1(x)) = X. Now,

differentiating both sides with respecttowe get f i( f '1(x)) (('f)'l) (¥)i 1. Solving for

(f'l)i(x),wehave(f‘l)i(x) W

Applying this rule to the inverse trigonometric functions, we can find the following derivatives:

arcsinx 1
1- x°
arccosx -1
1- X°
arctanx 1
1+ X2
arccotx -1
1+x°
arcsex 1
XX -1
arccsx -1
XX -1

15.|
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Higher Order D erivatives

The derivativef j of a functionf is itself a function that may be differentiable. If it is, then its
derivative is fj , called thesecondderivativeof f. The relationship off jand f is identical to
the relationship betwedrand f j. Similarly, the derivative off j is fj , the third derivative of
f. This process can continue indetiely, as long as the functions obtained continue to be
differentiable. After three, the notation changes, so that'fteedvative off is denotedf

and thent" derivative is f ™.

If y=f(X), then higher order derivatives are also denogedy , W"i i ¥, > or
d’y &’y dy
¢ e TdR "

Suggested Reading

1 HughesHallett, et al.Calculus: Single Variabler™
edition Chapter3. New York, NY: Wiley.

1 Larson & EdwardsCalculus of a Single Variable: Early
Transcendental Functiong™" edition. Chapter3. Boston,
MA: Cengage Learning.

{1 Stewartet al.Single Variable Calculu®™ edition.
Chapter3. Boston, MA: Cengage Learning.

1 Rogawskj et al.Calculus: Early Transcendentals Single
Variable. 4" edition. Chapter3. New York, NY:
Macmillan.

{ Sullivan & Miranda.Calculus: Early Transcendentalf2'
Edition. Chapter 3. New York, NY: W.HEFreeman.
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Sample Differentiation: Composite, Implicit, and Inverse Functions
Questions

Supposd(X) is a differentiable functionf(2) = - «‘61, andfj(2) = % If y = cosf(x)), compute(C::_y
X

(2).

o0 ® >

Explanation:
The correct answer is CFirst, compute the derivative using the chain rule:

Y = sintx) 1)
dx
Now, substitutex= 2 and use the information provided:
d . y
@)= sin((2) @)
X
sin( 2) 30
{ 1) 30

YT

What is the equation of the tangent linef (¥) = sin'l(\/;) atx=27?

25 s

EN S TN
N—

25

Jf(x
(x

o0 ® »
< K K <

_415

1
15

wk ok ok wk

N T e
N——

Explanation:
The correct answer is BFirst, use the chain rule to computgx) :

1 1 1.

o a1
fi(x) = N (\/;)2 ?\/_; 1- x Z/?

Now, evaluate this expressionat %:

17

—
| —




15 L

l_—.
L3l iP 3

This is the slope of the tangent linexat %. To get they-value of the point of tangency,

fi(3) =

computef(3):

t@)=sin*(Z) =in(3) £
So, using the poirglope form for the equation of a line, the equation of the tangent line is
y-2 2£(x 1)

6 4"

What is the slope of a line perpendicular to the tangent line to the cumaedefplicitly by
X2y? 1 xy =42 at the point (2,3)?

3
26
-2
3
26
3

OO0 w»

N |w

Explanation:
The correct answer is B.This is the correct answer. Implicitlyftirentiate both sides with
respect to:

x*Q@y ¥ y*2x dxy -iy) o+ =
2x%y i 2xy? xy iy-0 =
yi(2x2y- x) vy 2xy?

- 2xy?
yi=y . y
2X°y - X
yi:y(l- 2xy)
X(2xy - 1)
yi= <
X

2
to the tangent line at this point would have a slope equa%to

So, the slope of the tangent line at the poini 82,is_(-3) 3. Therefore, any line perpendicular
2

18
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Contextual Applications of Differentiation

Around G 9% of the questions on your AP exam will cover the topic Contextual Applications of
Differentiation.

In any context, the derivative of a function can be interpreteldeaisistantaneous rate of change
of the independent variable with respect to the dependent varialyle. ff(X) , then the units of

the derivative are the units pidivided by the units of.

Straight-Line Motion

Rectilinear (straightine) motion is described by a function and its derivatives.

If the function S(t) represents the position along a line of a particle at tjnteen the velocity is

given by v(t) = sj(t). When the velocity is positivehe particle is moving to the right; when it is
negative, the particle is moving to the left. The speed of the particle does not take direction into
account, so it is the absolute value of the velocityv(j|.

The acceleration of thparticle isa(t) = vj(t) sj(t). The velocity is increasing whea(t) is

positive and decreasing whexft) is negative. The speed, however, is only increasing when
v(t) and a(t) have the same sign (positive or negative). Whkét) and a(t) have different
signs, the particlebdbs speed i s decreasing.

Related Rates

Related rates problems involve multiple quantities thatcaanging in relation to each other.
Derivatives, and especially the chain rule, are used to solve these problems. Though the
problems vary widely with context, there are a few steps that usually lead to a solution.

Draw a picture and label relevant gtiaes with variables.

Express any rates of change given in the problem as derivatives.

Express the rate of change you need to solve for as a derivative.

Relate the variables involved in the rates of change to each other with an equation.
Differentiate bth sides of the equation with respect to time. This may involve applying
many derivative rules but will always involve the chain rule.

Substitute all of the given information into the resulting equation.

Solve for the unknown rate.

gk

N o

Example

The length othe horizontal leg of a right triangle is increasing at a rate of 3 ft/sec, and the length
of the vertical leg is decreasing at a rate of 2 ft/sec. At the instant when the horizontal legis 7 ft
and the vertical leg is 1 ft, at what rate is the lengtth®@hypotenuse changing? Is it increasing

or decreasing?

19
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We will follow the steps given above.

1.

X

2. We are given% =3 andﬂ =2

3. We need to findOI—Z

X=7,y %
4. x,y, andzare related by th€ythagorean theorenx®+y* =2°

5. Differentiating both sides of the equation, and applying the chain rule (since all of the

variables are functions of, we getZX% + ZyQ 2z dz

dt dt
6. After substituting all of the information we haveciuding x=7,y=1, and

z=+7*+1* =[50, the equation becomex(7)(3)+ 2(1)( 2) 2(\/%)2_?

dz

19
7. Solving, we get— =—=. The length of the hypotenuse is increasing since its
g g dt \/% g yp g

19
derivative is psitive, and it is doing so at a rateg% ft/sec

Linearization

The line tangent to a function at= c is the best possible linear approximation to the function
near x = c. Because ofiis, the tangent line, seen as a functigx) , is also called the
linearization of the function at the given point.

Example

We can use the linearization 6f(x) = 3xe  at x=0 to approximate thealue of f (0.1). To do
this, we need to first find the derivative. Applying the product and chain rules, we get
fi(x) 8 eO+3x e¥O2x=Be* -6x% *. The slope of the tangent line &0 is

fi(0) 2’- 6(Q€ =3. Thefunction passes through the po(i, f (0)) = (0,0), so the tangent
lineisy- 0 3(x 0).

20

—
| —




The linearization of at x=0 is L(X) =3X, so the approximation of (0.1) is
L(0.1)= 3(0.1) =0... Note that the true value df(0.1) is approximately 0.297, so the linear
approximation was an overestimate.

L'Hospital's Rule

When two functiond andg either both have limits of O or both have infiniimits, we say that

the limit of their ratio is an indeterminate form, representeeghyr 2 Limits that result in one
o}

of these forms <can beruleeal'ILIHEeﬂqutsitaﬂsgL&etlséh‘hea
f(x 0 f(x) fi(x)

as follows: |fI|m— approaches- or —, thenlim ——==lim ——" . In other words, when
°g(x) 0 gl xegi(®

we encounter one of these mdetermlnate forms, we can take the derivatioh off ¢he
functions, and then reevaluate the limit.

Free Response Tip

Limits that require

Rule appear often in free response questions
careful not to conf us:
quotient rule. The derivative of the ratio is n
being taken; rather, the deative of the
numerator and denominator are taken separa

Suggested Reading

f HughesHallett, et al.Calculus: Single Variabler
edition Chapterd. New York, NY: Wiley.

1 Larson & EdwardsCalculus of a Single Variable:
Early Transcendental Functis. 7" edition. Chapter
4. Boston, MA: Cengage Learning.

{ Stewartet al.Single Variable Calculu®™ edition.
Chapter4. Boston, MA: Cengage Learning.

1 Rogawskj et al.Calculus: Early Transcendentals
Single Variable4" edition. Chapter4. New York, NY:
Macmillan.

1 Sullivan & Miranda.Calculus: Early Transcendentalg
2"dEdition. Chapter 4. New York, NY: W.H. Freemal
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Sample Contextual Applications of Differentiation Questions

Compute the limit, provided that it exists:

im o+ X
x- 1" sin(x- 1)

A. 3
B. V11
C. 10

D. Does not exist

Explanation:
The correct answer is AFirst, use the properties of limits to simplify the problem:

fim, 10+ % =m0 «1 X2 #im 10 i —= X
x- 1" sin(x- 1) \x 1°¢ sini - )_ x- 1 8ink L

Observe that since the limit of a constant is the constant,10=10. The second limit is more
x- 1

delicate and can be handled one of two ways
indeterminate of the form 0/0). We show the former:
lim 1 1
lim ——— = lim — =7 = : t
x- 1" sin(x- 1) x- 1*sin(x- 1) im, asin(x- 1) 6 _lim SiN& -1)
-(x D) gae (x 1) x- 1 (X 3
Substituting these results into timtial equation yieldslirr11+ 1O+S|n(x =/10 1 V9 =
. ... cos(x) 1
Compute the limitlim 3X(—)'
x 0 e~ (3x )
A.14/9
B.0
C. 4/9
D. &
Explanation:
The correct answer is A.Substituting ik = 0 directly shows that the limit is indetermata of
the form 0/0. So, wuse | 6Hopital 6s rul e t

22

—
| —

(0] C

om




cos(X ) 1_Iim -2sin( )

lim = still 0/0, so apply I'Hopital'sule again!
M Gx @) " 35 3 ( pply 'Hop gain!]
=lim %) (no longer 0/0, so substitutexn = 0)

ols

Letg(X) = X* sin(ﬁ) . Determine the smallest nonnegative valuefof which the tangent line

to g(x) atx = cis horizontal.

A.0

B. 0.511
C.4.4.53
D. 12.654

Explanation:

The correct answer is CObserve thatgi(X) = X* cos(\/_x) ?j: s—rr(\/_x) é ¥ . We must
X

determine a value of ¢ for whigj(c) =0, which corresponds to adiintercept of the graph of
gi(x). Use the graphg calculator to get the following:

y =g'(x)

4.537

~
P) )
(7, | e —
[y
=
x f

Y

Hence, the smallest suchvalue is approximately 4.511.
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Analytical Applications of Differentiation

About 8 11% of the questions on your AP exam will cover Analytical Applications of
Differentiation.

Mean Value Theorem

The Mean Value Theorem states that thiisfcontinuous orfa, b| and differentiable orfa, b),

then theras at least one point betwearandb at which the instantaneous rate of changéi®f
equalto its average range of change over the entire interval. In other words, there is at least one
f(b)- f(a)

valuec in the interval(a, b) for which f(c) .
- a

Free Response Tip

When part of a free response question contains
phrase HfAexplain why th
should immediatgl think of two theorems. If thq
function for which a value is being described i
derivative, consider the Mean Value Theorem first
not, consider the Intermediate Value Theorem. In ei
case, make sure to justify why the theorem can
applied in tems of continuity and differentiability.

Intervals of Increase and Decrease and the First Derative Test

When the derivative of a function is positive, the function increases, and when the derivative is
negative, the function decreases. To find intervals on which a function is increasing or
decreasing, then, itis necessary to solve for whegerigative is positive or negative. The
procedure for doing this involves first finding the values, called critical points, at which the
derivative is zero or undefined.

If f changedrom increasing to decreasingat c, f has a local maximum at If it changes from
decreasing to increasing at= c, it has a local minimum &t Taken together, local maximums
and local minimums are referred to as local extrema.

The first derivative test summarizes these facts and describes tlesgd finding local
maximums and minimums. Specifically, suppose cis a critical point of.
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Then

1 If fjis positive to the left of, and negative to the right of thenf has a local maximum

atc.
1 If fjis negative to the left af, and positive to the right @ thenf has a local minimum

atc.
1 If neither of the above conditions applyloes not have a local extremecat

Example

Let f(x)=x - 3x>. To find thelocal extrema of, we begin by finding the derivative, setting it
to 0, and solving fok:

fi(x) 5x 9%
5x*- 9x* =0
x*(5x*- 9) =0
3 3
X= O’_ y T =
V57 5
Since f | is never undefined, these three values are the only critical poifittwdse critical
3 4 3 a. 3

points divde the real number line into four intervalg: @ —= 0 ,0,—&=
R B

a 3 , : : :
ge—,o . From each of these intervals we choose a point and use it to determine wiieiser

¢V5
3

positive or negative on the interval. Note that © 1.34.

,and

5
Interval & qi éio 2@3 éSQ
& 5 G ¢ 5 V5’
Test point -2 -1 1 2
X=a
fi(a) fi( 2) 44 fily 4 fi@® =4 fi(2) 44
Conclusion fi is positive, fiisnegative, | fiisnegative, | fi is positive,
sofis increasing| sofis decreasing sofis decreasing sofis increasing

3
Examining the table, we ségatf changes from increasing to decreasing at E , sof has a

. : . . 3
local maximum there. Alsd,changes from decreasing to increasing atﬁ, sof has a local

—
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minimum there. Note that at=0 f has neither a maximum nor a minimum, since the derivative
does not change sigfrom the left to the right of the point.

Absolute Extrema

If f(c)=M is the largest value thétttains on some intervdl contining c, thenM is called
the global maximum ofon | . Similarly, if f(c) =M is the smallest value thaattains on
some intervall containingc, thenM is called the global minimum d&fon I .

There is no reason to expect that an arbitrary function has a global maximum or minimum value
on a given interval. However, the Extreme Value Theorem guarantees that a function does have §
global maximum and a global minim on any closed interval on which it is continuous. On

such an interval, both of the global extrema must occur at either a critical point or at an endpoint
of the interval.

The candidatetest gives a procedure for finding these global extrema on a chisedl [a, b] :

Check thaff is continuous orja, bJ.

Find the critical numbers dfbetweera andb.

Check the value dfat each critical number, atand ato.

The largest value found in the previous step iggtbbal maximum, and the smallest
value found is the global minimum.

PN =

Concavity and Inflection Points

The graph of a functiofiis concave up when its derivatiVig is increasing, and it is concave
down when fj is decreasing. Since the relationshipfaf to fj isthe same as the relationship
of fjtof, we can determine on which intervals is increasing (or deeasing) by checking
where f i is positive (or negative). Therefore, the criteriaffoeing concave up or down can be
restated in terms of j : f is concave up wherf  is positive, andoncave down wherf i is
negative.

A point at which a function changes concavity (from up to down or down to up) is called a point
of inflection. These can be found in a completely analogous manner to how local extrema are
located sing the first derivative test: find where the second derivative is O or undefined, and test
points on either side to determine if concavity is changing.

Second Derivative Test

In addition to providing information about concavity and inflection pothis,second derivative

of a function can also help determine whether a critical point represents a relative maximum or
minimum. Specifically, suppodehas a critical point ak = c.

Then
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1 if fi(g) O,fhas alocal mimum atc.
1 if fi(g) O,fhas alocal maximum at
T if fi(g) O, this testisinconclusive, and the first derivative test must be used.

Summary of Curve Sketching

The table below summarizes the behavior of a grapb=at, depending on the values &fj(c)
and fj(q).

Optimization

The techniques given for finding local and global extrema can be applied in a wide variety of
application problems, known as optimization problems. ddtails of the procedure and strategy
vary by context, but there are some nearly universal steps for such situations:

1. Draw a picture.

2. Write a function for the quantity to be optimized (maximized or minimized).

3. Rewrite the function from the previous stigpbe in terms of a single independent
variable. This often involves using a secondary equation, called a constraint.

4. Determine the domain of interest.

5. Differentiate the function and find the relevant critical points.

6. Use the first derivative test, secoddrivative test, or candidates test to determine which
of the critical points or endpoints represent the optimal solution.
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Example

A manufacturer wants to construct a cylindrical container with a volume df8siing the steps
notes let us find the onensions of the container that will minimize the amount of material used.

1.

~ o~
N

- ——

2. The guantity to be optimized is the surface area of the container. In terrasia,
the surface area is given by the functiSm 20r> +2 th .

3. As written, the function that gives the surface area depends om andth. However,
since we know the volume of the cylinder is to be 5, and the volume formula is

V =pr?h, we have the constraiptr’h =5. Solving forh gives h = iz . This can be
pr

substituted into the functioB S=2pr’+2 ph 2 15 2Zr ?@[% 82:r 2,0&.
cpre =+ r

Now Sis written in terms of a single variabte,
4. Considering the physical situation, itis clear that the domain of interest @ A
cylinder cannot exist witln ¢ O.
5. Differentiating and setting to zero
d_S:4 r _1_0
ar T2
10

4apr - z =9)
4pr®-10 =0
=
2p
5
r =3—
\ 20
The derivative is undefined at=0, but that is irrelevant since it is not in the
domain.
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6. The only criticapointisr = 3/% , and the domain afis (o,a ) , SO there are no

endpoints. To justify that this critical point is indeed a minimum, we will use the
second derivative test.

d’s 20 / 2
— =4p +r_ Evaluating atr—3% we haveoI S—4,0 +A B2 . Since

dr dr? ﬁ/?o
A2 O

this is positive, the critical point is indeed a minimum, as desired.

Free Response Tip

As in the examplgrovided many applied optimizatiof
problems appear to have only one possible solution. §
when this is the case, make sure you include a justifica
for this solution beig the desired optimal point. Th
Second Derivative Test is often the easiest way td
thisd but keep the First Derivative Testand the Candic
Testin mind as well.

Implicitly Defined Curves

When a curve is defined implicitly in an equation involvingndy, theapplications of
derivatives discussed in this section still generally apply. As with explicitly defined functions,

critical points are determined by examining wh\%}ézo or is undefined. However, the details
X

e . , : . d
of finding where this ocas are often more complicated since the expre35|0|a¥ousually
X

involves bothx andy. Second derivatives are often trickier to find as well. Two points are
helpful:

1 The derivative ofd—y with respect tox is the second derivative giwith respect toc. In
X

dady ¢ €y
other words,— ae— edy
dx&dx 2 dx
2
1 When the expression foa7y involves gy it is usually possible to simplify by
X

substituting a previously obtained e&psion for%/.
X
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Example

Supposex’® +2xy . The derivativeg—y can be found by differentiating with respecktand
X

solving for d_y:
dx
d/, d
—(x“+2xy] =—(0
.. dy..
2Xx+2 @ 2x 10 C
dx
dy_-x-y
dx X

To find the second derivative, differentiate both sides of this result with respect to

dady g d -&k-y G
dxgec;e(j dx ¢ x 0.

& , .adyd \ (.
dx? NG

Now substituting =~ for dy.

X
a a-X -y &0
1- 1 B ( 1
a0’y _& E{Wﬁ‘%) N ixay x wox 2,
dXZ_ X2 - 2 2

X X

30

—
| —




Suggested Reading

1 HughesHallett, et al.Calculus: Single Variabler*"
edition Chaper 4. New York, NY: Wiley.

1 Larson & EdwardsCalculus of a Single Variable: Early
Transcendental Function®™" edition. Chapter4.
Boston, MA: Cengage Learning.

1 Stewartet al.Single Variable Calculu®™ edition.
Chapter4. Boston, MA: Cengage Learning

1 Rogawskj et al.Calculus: Early Transcendentals Sing
Variable. 4" edition. Chapter4. New York, NY:
Macmillan.

1 Sullivan & Miranda.Calculus: Early Transcendentals
2"d Edition. Chapter 4. New York, NY: W.H. Freeman.

Sample Analytical Applications of Differentiation Questions
What is the absolute maximum valuegfx) = x?e™?* on [i 1, 2]?

1

o0 w>
@ Q0

Explanation:

The correct answer is C.You must first determine all the critical points on the intefval2].

Then evaluatg(x) at each of them and identify the largest one as the absolute maximum. The
endpointsi 1 and 2 are automatically endpoints. To find the others, compute the derivative and
find where it equals zero:

gi(x) =x%e 2*( 2) axe **
= 2xe?(x B
This is equal to zero when any of its factors equals zero, namelyandx= 1. So, the list of
critical points isi 1, 0, 1, and 2. Computg(x) at each of these:

g(-1) =% g(0) & g e g2 4e=
Observe that both(1) andg(2) are less than 1. Sg(i 1) =€? is the absolute maximum.
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Supposd(X) is a twice differentiable function. The graphyot fi(x) is as follows:

YA

y =f'(x)

A

Explanation:
The correct answer is CThe graph off = f(x) is concave down on the intervals where the

graph ofy = f{X) is decreasing. This occurs wheis in the se(- g 3) (C10) (4C).

Supposd(x) is a function such thdt(1) = 1,fHi 2) =fH1) = 0, and+5) does not exist.
Moreover, the sign di{x) is given as follows:

F(x) - ~ + +
—-€

Which of these statements must be true?
(h fi(x) isincreasing on (1,5).

(1 f(x) has a local maximum at= 5.
() f(x) has an inflection point at= 1.
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A.land Il only

B. | only

C. land Il only
D. 1, I, and Il
Explanation:

The correct answer is Cl is true becauseqx) =fj(x))j> 0 meansfj(x) is increasing. (ll) is false
becausé(x) could have a vertical asymptotexat 5; in such case, there is no local maximum at
x=5.lll is true because the signfefx) changes on either sidewt& 1 and the point ((1))

must exist besusefi(1) is assumed to exist.
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Integration and Accumulation of Change

Around 17 20% of the questions on your exam will cover Integration and Accumulation of
Change.

Riemann Sums and the Definite Integral
When a function represents a rate of clkarige area between the graph of the function and the
x-axis represents the accumulation of the change. If the area is abavaxieethe accumulated

change is positive, whereas if the area is belowags, the accumulated change is negative.

More generally, the accumulation of a function on a closed intdryas] , represented
graphically by the area between a function andxthais, is called the definite integral of the
function on that interval, and is denotﬁ’if (x) dx.

For simple functions, the definite integral can often be evaluated geometrically.

Example

To evaluateﬁl(x- 3)dx, draw a picture:

The area between the curve and the graph is divided into two triangeetarghr triangle has an
area of 8. However, it is below theaxis, so the accumulation is of negative values. Therefore, it
contributes a value of 8 to the integral. The smaller triangle accumulates positive values and
1 4 1_ 15
has an ar@of ~. Together, we hav§ (x- 3)dx =8 = —.
2 1 2 2
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Definite integrals can be approximated using a variety of sums, each term of which represents

the area of a rectangle over a small subinterval. To begin, consider a fuddti)nover the

interval [a, b] , and letn be the number of equally sized subintervals into which it is split. Then

b-a
n

subinterval. If a rectangle is constructed on each subinterval so that its height is equal to the

value of f(x), the sum of the areas will{ef (x,)+ f(x) +- #(x.,)) x. This sum is called

a left Riemann sum.

Dx is the width of each subinterval, and=a 4 X is the leftendpoint of the™

n

The notation & & stands for the sum+a, +- & . The left Riemann sum can be written
i=1

n-1

using this notation a§) f ()g)DX. Other commonly used approximations are the right Riemann
i=0

sum, and the midpoint Riemassm, showras follows:

Midpoint Riemann sum

As nincreases in size, each of these Riemann sums become a more accurate approximation of
the definite integral. When the limitis takenas @, any of these sums become equal to the
definite integral. In other words, the integral of a functf@ver the integrafa, b] can be

n-1

b .
defined asij f(x)dx= L'.nl a f(x)Dx, provided this limit exists.
i=0

In fact, althoughDx b-a is the most common way to divide an interval into subintervals, all
n

of the above sums can be computed with potentially diffepantalues for ach subinterval.
The limit of the sum is still equal to the definite integral.

Another expression that can be used to approximate the definite integral is a trapezoidal sum,
which represents the areas of trapezoids, rather than rectangles, constructbd ove

subintervals. The trapezoidal sum—[z(ls(f(%)+2f(x1) 2f(x,) -+ 2%(x.,) f(ﬂg)).
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Free Response Tip

Free resporesquestions often give values of a function in a ta
A Riemann sum can be used to approximate its integral using
subintervals shown in the table, even if the intervals are not &
same length. The length of each subinterval is the dist
between consecutive-values, and the height of the rectangle
that subinterval is thg-value associated with either the |gftin

case of a left Riemann sum) or the righ{in case of a right
Riemann sum). In either case, your sum should have one f
term than there are points given in the table.

Properties of the Definite Integral

The definite integral satisfies several properties:

)l f’ic dx= ¢(b- a), for any constant

T fefeydx=c ffp)dx

T Alfeo° g]dx = FR & ° o Fick

T ffeodx=0

T Rfdx= - F§R o

T Afeodx= Y dx+
Example

4
~

Supposefif (x) dx=9 and r“if (x) dx=12. Find n( f (x) - 3)dx.

First, we haveﬁ( f(x)- 3)dx= :ﬁx) dx - j3 dj. The latter integral is simplg(4- 7) = 9.

For the former

Afeodx= | f§R dx+
= ffdx
=9 W
=3
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The answer is therﬁ(f(x)- 3)dx 8 ¢ 9y 12

Accumulation Functions and the Fundamental Theorem of Calculus

A function can be defined in term$ adefinite integral:g(x) = Fif(t) dt. The first part of the

Fundamental Theorem of Calculus states that the derivative of this function at a given point is

equal to the value of the function being accumulated. Thay;(s) g—(fj f(t) dt) %X .
X

I ~2 —_ _X i = = 1 X =
Since pf®dt= - {)dt, we also havedx(rlf(t)dt) ck( afﬁt)dt) f€x) . If the

upper limit of integration is a function a&f the chain rule can be applied along with the
fundamental theorem.

Example

I f(x):r”izsintdt,then fi(x) sin(e) 2X

Antiderivatives and the Fundamental Theorem of Calculus

If gi(x) #(X), gis said to be an antiderivative biNote that ifC is any constant, then
di[g(x) +C|] =g(® 0 + (¥, so thatg(X) + Cis alsoan antiderivative of. In fact, all
X

antiderivatives of a given function have this relationship with each other: they differ only by a
constant. Every continuous functidias an antiderivative, since the functigiix) = r“if(t) dt

satisfiesgi(X) F(X) and is therefore an antiderivativefof

The second part of the Fundamental Theorem of Calculus statesftisatohtinuous on the
interval [a, b] , andF is any antiderivative ofon that interval, therrif (X)dx=Fb -H39.

This fact means that antiderivatives and integrals are very closely related. Because of this, an
antiderivative is also called an indefinite integral, and is denfje(k) dx= F(X +C, whereF
Is any antiderivative.
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BasicRules of Antiderivatives

Since finding an antiderivative is the inverse process of finding a derivative, the rules for
derivatives can be reversed to find antiderivatives.

n

X 1 Xn+l+C
n+1

g" g+C
1 In|x+C

X
sinx - cosx +4C
COSX sinx+C
Se& X tanx+C
secx tarx | secx+C
CSCX cotx | - cscx 4C
CSCZ X - cotx +4C

Integration by Substitution

Substitution, also known as changkvariables, is a technique for finding antiderivatives and is
analogous to the chain rule for derivatives. It works by noting that

Afi(9(¥)g(®W dx f=d ¥ C The technique, then, requires recognizing 3¥ and gi(X)
in the expression being integrated.

If u=g(X, then du= gj(x) dx, so the integral can be writtgff (U) du= f(u +C.

When using this technique with definite integrals, it is important to translateriite of
integration to be in terms of the new function

Example

The integral r’ilzsinzqcos @ can be evaluated by substituting=sing. Thendu =cosgd «.

When q:%, u=sin2 = 1, and wheng = ¢, u=sinp = -1. The integral becomes

0
~92 élgﬂ 1 1
u‘du=cu’, HD-=-= —.
n & Uy 3 3
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Integration by Parts

Integration by parts is another technique for finding derivatives and is the antidifferentiation
analogue tdhe product rule for derivatives. The rule states fjadv=uv - VL. The key in

applying it is choosing useful expressionsdanddv. The acronym LIPET can help you
prioritize the expression chosen farLogarithm, Inverse trigonometri¢?olynomial,
Exponential,and Trigonometric. More generally should be an expression that will become
simpler when differentiated, amt should be an expression for which you can easily find an
antiderivative.

Example

Considerrixex dx By settingu = X and dv= & dx, we can finddu= dxand v=€". Then

using the integration by parts rule (and temporarily ignoring the limits of integration), the
integral beomes i€’ = x€* - €fpx ®*- €. The answer to the original integral is

gre- & g=(18 -8 (o0& § 1

Note that it is possible that the integrilt du obtained when integrating by parts itself requires
another integration by parts.

Other Integration Techniques

If the numerator of a rational function has a degree that is at least as high as the degree of the
denominator, long divisionis often helpful in integration.

Example

3
~X T X . : :
Considernndx. Since the numeratorab a higher degree than the denominator, long

3
X'+ X 2
division can be applied to transform the integral. Weg(etT =x* & 2 ﬁ so that the

answer is%x3+—;x2 2 2rln|x 1 C.

Another technique that can be useful for some integrals is completisgubee.
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Integration by Partial Fractions

If a rational function does not lend itself well to long division, it is possible that it can be
decomposed into a sum of multiple terms, each of which can then be integrated. The AP exam
only covers situationsy which these terms have nonrepeating linear factors. The general
technique is illustrated in tHellowing example.

Example

The rational function > x+9

is not a candidate for long division, and the substitution
x“- 3x -0

u=x - 3x -10 does not yield anything useful, since them=2x -3. Instead, we will
decompose it into partial fractions.

To begin, note that the denominator factorg%s5)(X 2). We would like to findA andB such
x+9 A
X2-3x 10 x 5
X+9 =A(x 2) Bfx 5). Substitutingx= 2 gives7= 7B, soB= 4, and substituting

x =5 gives14= 7A, so A=2. Thus we have found thatZXJr9 =2 L .
x-3x 10 x 5 x 2

that

B > Multiplying both sides of this equation {%- 5)(X 2), we get
X 4

The integral of the original expression can now be found:
~ X*9 a2 1

dx= @x 2in|x § Infx 4 +C
e ax 2077 &l 5 % 20k 20D & b 2

Improper Integrals

If an integral has® candhas one or both of the limits of integration, it is called an improper
integral. An improper integral of this type can be evaluated as the liagtahdard definite
integral. If the limit exists, we say that th@egral converges to the value of the limit; otherwise,
the integral diverges.

Example

o . P . . - X- - .
fje * dx is evaluated aiai_n! ne * dX. The antiderivative o "is - € *, the expressionecomes
lim & e‘XLﬁz =e*-( -8)=0 4 & The integral converges and has a value of 1.
Another type of improper integral occurs when the integrand is unbounded within the interval of

integration. This will usually be due to a vertical asymptote. Here too tingrah is evaluated
using the limits of standard integrals as the limits of integration approach the discontinuity.
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Suggested Reading

1 HughesHallett, et al.Calculus: Single Variabler™"
edition Chaptes 5-7. New York, NY: Wiley.

i Larson & EdwardsCalculus of a Single Variable: Early
Transcendental Functiong™" edition Chaptes 5 and 8
Boston, MA: Cengage Learning.

1 Stewartet al.Single Variable Calculu®™ edition.
Chaptes 5 and 7Boston, MA: Cengage Learning.

1 Rogawskj et al.Calculus: Early Transcendentals Singlg
Variable. 4" edition. Chaptes 5 and 7New Yok, NY:
Macmillan.

{1 Sullivan & Miranda.Calculus: Early Transcendentaf@'
Edition. Chapters 5 and 7. New York, NY: W.H.
Freeman.

Sample Integration and Accumulation of Change Questions

Compute ﬂn(\/;) dx.
A. 2x +C

B. 3xInx+C

C. xln(\/;)- Ix €
D. 1+C

Explanation:
The correct answer is CFirst, use the logarithm properties to Wﬂitt{x/;) as%lnx. Then,

ﬁn(\/;)dx =3 I dx. To computefjnx dx , use the integration by parts formula

fdv =uv - vgu with
u=Inx dv =dx
du =+dx vV X
Doing so yields
finxdx =xInx - xfLox
=XInx -pydx

=xlnx -x @&
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So

An(vx)dx =1 Inpx

(xInx -x @)

In x —%x G

x

X Nl Nk N

1
X
>
—
<
N —
Nil—' N
X
® P

N
=3
X

N—

s
x

The graph of = f(t) is given below:

YA

Define the functionA(X) = ﬁ;f(t)dt, X 2 4. At whatx-value doe#\(x) = 0?
A. 3

o0 w
o o1 b

Explanation:
The correct answer is DUse the geometric formulas for area of rectangles anugtes.

Observe that\(0) = 2(2) + ¥2(2)(2) = 6 square units. S‘fgpdf(t)dt =6. Now you must determine

a value ofx > 0 such that the area that lies undertthgis is 6 square units. To this end, observe
that
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! !
pfthdt= @t 0

Afodt= 1@ =2

"

A =( D) =2-

ﬁf(t)dt=(-1)(2) 2.
So,by interval additivity,
AB)= 3 f(dt =" fdt T FOdtF | KOdt Ffedt 0.

o

1

V3

If f(x)= rjlz tan™(t)dt, computefi

ko]

A. -

3

s

B.

1+43
B

+

o

N[

@

[ERN

p
343

Explanation:
The correct answer is AFirst write the integral so that the upper limit is the variable expression

by flipping the limits and multiplying the integral byL.
g X
f(x) = f tan Ytydt = - fn Y(t)dt

Now use the fundamental theorem of calculus with the chairtawa#ferentiatef(x):
fi(x) = -tan'l(xz) 2R
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Differential Equations

About 6 9% of the questions on your exam will cover Differential Equations.

Introduction to Differ ential Equations

A differential equation is an equation that involves a function and one or more of its derivatives.
The solution to a differential equation is a function that satisfies the equation

A differential equation may have infinitely many sobus parameterized by a constant; this is
called the general solution to the equation. If additional information is given, the constant can be
determined. This additional information comes in the form of an initial condition; that is, a value
f(x,) = y,that must be satisfied by the solution.

Example

o

Consider the differential equatioyii | ¥ with initial condition y%
¢

-/ . Any function of

-QHO

. d? : :
the form Yy = CsinXis a general solution toithequation sincedy(Csm x) = CsinX Using

the initial condition given, we have7 :Csin’g, so we can solve to fing = 7. The solution

to the equation i/ = 7SinX.

Slope Fields

A slope fieldis a graphical representation of a differential equation. At each of finitely many
points in some section of a plane, a short line is drawn representing the slope of a function. This
represents a differential equation whose solution is the function vehoses are being drawn.

Example
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The slope field shown represents the differential equa%}éfc 2x. The solutions to this
X

equation are the functiong = x> +C, as can be seen in the shapes formed églthpes shown.

Euler's Method

Eul er6s Method is a technique for approxi ma
given an initial condition. It works by following the slope defined by the differential equation for

a series of shorntervals, called steps, starting at the initial condition.

Given an initial point(x,, y, ), and step sizé&x, successive pointgx, y,) for nz 1are found

using the equationg =x,, x andy, =y, , + D% . This process continues until the
X
(%-1:¥n 1)
desired point is reached.

Example

Given %’ =2xy 4 with initial condition (0,1), we will approximatey(1) using two steps of
X

equal size.
Sincex has to move from 0 to 1 with 2 steps, we hawe =0.5. We have(x,, y,) = (0,1), SO

=0 9.5 8tandy =1 #©.520)1) % = Continuing to the next step, we get
X, =05 4.5 Fandy,=1.5 0.5 2(0.5)(1.5) 4L 2.7. Our estimate foy(1) is 2.75.

Separation of Variables

A certain class of differential equations, called separable equations, can be solved using
antidifferentiation. The technique requires sepaggtine variables so that each is represented
only on a single side of the equation. Integrating both sides of the equation then produces a
general solution. If an initial condition is provided, it can be used to find a particular solution.
When integratingit is only necessary to include a const@nin one side of the equation.

Example
Consider the differential equatio%t% =6yt with initial condition Y(1) =1. To solve this, we

1
begin by separating the variableys dy=6tdt. Integrating both sides, we have:
~1

-1
rde: EiﬁiY -;=32+C
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This gives a general solution, although it is implicitly defined. We can solwetfomake it
explicit, but it is often advisable to first use the initial conditiosabve forC. In this case,
substituting the initial values results@=1 4.

Using this value and solving fgr we can obtain the explicit solution:

Exponential Models

Many applications of differential equations involue @ponential growth or decay model. This
model occurs in any situation in which the rate of change of a quantity is proportional to the

guantity. As an equation, this is representea%létfy: ky. This equation is easily solved using

sepaation of variables, and the general solutioryis y,€*, wherey, is the value of when
t=0.

Example

The rate of growth in a bacteria culture is proportional to the number of bacteria present. A
certain culure starts out with 200 bacteria, and after 2 hours there,@08.1 et us find the
number of bacteria present after 5 hours.

To begin, note that since this follows exponential growth with a starting value of 200, the
population is modeled by the equatiy = 200 . To solve fork, use the fact that after 2 hours
there are 1000 bacteria:

1000 = 20(*
5=¢"
t= ln_5

2

In5, 5In5

We can now rewrite the model gs= 200e? . The population after 5 hours 20e 2 °© 11180.
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Logistic Models

The logistic model is a population model defined by the differential equ%{on ky(M -y),

Y

d o
whereM is called the carrying capacity. Alternatively, this can be wri(%n: kygl M
¢

Note that the value dfwill be different depending on which form of the equation is used. The
solution to this differential equation is called a logistic curve, and resembl&sltwing graph:

T O """
r=2-vx — = R=2-x?
y=Vx | 7

BV

The following facts about the logistic functio¥(t) are important:

f Y(t) isincreasing for all real numbers
1 Y(t)<M for all real numbers

T limy)=M
f They-coordinate of the inflection point of(t) is % At this point, the function

changes from concave up to concave down, and it is also the point of greatest growth
rate.
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Suggested Reading
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edition Chapter 1. New York, NY: Wiley.

1 Larson& Edwards.Calculus of a Single Variable:
Early Transcendental Functiong" edition. Chapter
6. Boston, MA: Cengage Learning.

{ Stewartet al.Single Variable Calculu®™ edition.
Chapter9. Boston, MA: Cengage Learning.

1 Rogawskj et al.Calculus: EarlyTranscendentals
Single Variable4" edition. Chapter9. New York,
NY: Macmillan.

1 Sullivan & Miranda.Calculus: Early
Transcendental2"? Edition. Chapter 16. New York,
NY: W.H. Freeman.

Sample Differential Equations Questions

What is the general solution of the differential equa®diyi(x) =e* ) ?

A y(x)= IHW

2e
B.y(x)= 1 (e 2x GP)
C. y()= ( e
D. y(x)= -iIn ( ezx) G
Explanation:

The correct answer is A.Separate variables by getting $x¢erms on one side and tkderns
on the other. Then integrate both sides and solwe for
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e2yi(x) = e¥™
ax dy _ o4y
dx
e?*dy =e*dx
e Ydy =e dx
/e Ydy = effidx

_1a-4y -1 2X
7€ € C+

e

The rate at which a population of gray squirr@(ﬂ;) in a state park changes over time is

governed by the differential equatlngn;—) 53@ — 013%__6 . Here,P(t) is measured in

thousands of squirrels amds measured in months. For which of the following initial population
measurements?(0) = B would the population of gray squirrels theoretically increase

exponentially?

A. P(0)=20

B. P(0)=16

C. P(0)=10

D. P(0)=4

Explanation:

The correct answer is A.The equilibrium populations occur whqul; =0. Setting the right

side of the differetial equation equal to zero yielts= 8 andP = 16.
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The corresponding slope field for this equation would look like the following:

A
.

So, for any initial populatio(0) larger than 16, the population would increase exponentially.
So, in particular, iP(0) = 20, this is the case.

Use Eul er 6s me thh©@2banthi R dtepd to apgroxisdteethe solution of the

Byi(t) = y(t) +
initial-value problemeyl() vy at timet = 0.5.

i y(0)=2
A. 2.500
B. 3.188
C. 4.109
D. 8.250

Explanation:

The correctanswerisBl n t he notati on of Eul er 6s met hood

y(ti):yl Yo hf(ty yo)
y(t) =y, =% mi(t y)

where

Y, =2, h =0.25,
t,=0,t, 0 8.25t, G 2(0.25) 0.
fty)=y +
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Observe that

=y(t) 2 6252 0 25
y,=y(t) 2.5 8.25(0.25 #5) 31875 3°

52

=
| —




Applications of Integration

About 6 9% of the questions on your AP exam wibver Applications of integration.
Average Value

If fis continuous on the interviih, b] , then the average valuefadn that interval is
P 1 I’if (x) dx. If fis nonnegative on the interval, the average value of tietifun has a
- a

simple graphical interpretation: it is the height a rectangle over the interval would have to be to
have the same area as exists betweer-thes and the function.

Position, Velocity, and Acceleration

When a particle is moving along aatht line, its motion can be modeled using derivatives, as
discussed earlier. The theory and techniques of integration now allow us to extend this
description with the following two points:

t
1 The displacement of the particle over the time intefyal,] is given byﬁZV(t) dt, where
V(t) is the velocity of the particle.

!
T The total distance traveled by the particle over the time int¢tva]] is ﬁz |v(t)| dt.
Recallthat |v(t)| is the speed of the particle at time

Accumulation Functionsin Context

The net change of a quantity over an interval can be found by integrating the rate of change. This
is an important fact that can be used in a \go€applications.

Example

A tank of water contains 53 gallons at 8:00 AM. Between 8:00 AM and 12:00 PM, water leaks
from the tank at a rate af(t) = 3|sint|, wheret is the number of hours since 8:00 AM, ands

measured in gallons peolr. How much water is remaining in the tank at 12:00 PM?
To solve this, we need to consider two quantities: the amount of water that the tank has at 8:0(

AM, and the total amount of water that leaks from the tank between the hours of 8:00 AM and
12:00 PM The first quantity is given as 53. The second quantity is the accumulation of the rate of
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leaking over the four hours. Therefore, the amount of water remaining in the tank at 12:00 PM is
53- fiB|si rt|dt© 46 gallons.

Free Response Tip
Pay attention to units in free response qoest as they arg
often required to be correct to receive full credit. Remen
that the units ofg—y are the units oy over the units ok, and
X

the units offif(x)dx are the units of times the units ok.

When he units ofy are a rate of change over time, and
units ofx represent time, the units of the integral end up be
equivalent to whatever quantity is changing.

Area Between Cuves

if £(X)2 g(x) on the intervala, b], then the area betweénn g betweeraandb is
fi[f(x)- g(x)]dx. If the two functions intersect on an interval, the integral needs to be split into

multiple subintevals, so that along each section the functions can be subtracted in the proper
order.

Example

Let us find the area in the first quadrant bound by the graphs(x)f:%x, g(X) = ¥, and the

line x=1. This is represeat in thefollowing graph

1-_
g(x)=x2
1 i
2 !
) |
27T f(x)=2x |
1 1
2
( ]
L > )




The graphs cross at= % so we will need to evaluate the two regions separately. The first

region has are glzélx_ X gx =1 and the second region has a“% d 2. }x--gx—i

J e Vg J et 270 g
The total area is£ +E :}
48 48 8

When curves are given as functionsyafstead ofx, the area between them can be found using
the same technique. Instead of the integrandgahe function on top minus the function on
bottom, it is the dinction on the right minus the function on the left.

Volumes with Cross Sections

When a solid can be described in terms of its base and-sectisnal shapes, the volume of the
solid can be computed by integrating the area of the cross sectiogsaalappropriate interval.
If the cross sections described are perpendicular t-¢xés, the volume is given by

V= r”iA(X) dx, where A(X) is the area of the cross section in terms. df the cross sections are

perpewicular to they-axis, the integral is with respectyov = rj’ A(y) dy.

Shapes commonly used as cross sections include squares, rectangles, right triangles, equilateral
triangles, and semicircles.

Example
The base of a solid is the regionthe first quadrant of they-plane bounded by =+/x and the

vertical linex = 4, shownas follows Cross sections of the solid taken perpendicular tg-tres
are semicircles witthe diameter lying in the region given.
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