

AP Computer Science A
Study Guide

AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this
product.

Primitive Types

Key Exam Details

The AP® Computer Science A course is equivalent to a first-semester, college-level course in computer
science. The 3-hour, end-of-course exam is comprised of 44 questions, including 40 multiple-choice
questions (50% of the exam) and 4 free-response questions (50% of the exam).

The exam covers the following course content categories:
• Primitive Types: 2.5%–5% of test questions
• Using Objects: 5%–7.5% of test questions
• Boolean Expressions and if Statements: 15%–17.5% of test questions
• Iteration: 17.5%–22.5% of test questions
• Writing Classes: 5%–7.5% of test questions
• Array: 10%–15% of test questions
• ArrayList: 2.5%–7.5% of test questions
• 2D Array: 7.5%–10% of test questions
• Inheritance: 5%–10% of test questions
• Recursion: 5%–7.5% of test questions

This guide provides an overview of the main tested subjects, along with sample AP multiple-choice
questions that are similar to the questions you will see on test day.

Around 2.5–5% of the questions you’ll see on the exam cover the topic of Primitive Types.

Printing and Comments

The System.out.print and System.out.println methods are used to send output for display
on the console. The only difference between them is that the println method moves the cursor to a new
line after displaying the given data, while the print method does not.

A comment is any text in a source code file that is marked to not be executed by the computer. In Java,
single line comments are denoted by //, and multiline comments are demarcated by /* and */, as in the
following examples:

// this is a single line comment

/*
This is a multiline comment.
All of this will be ignored by the computer.
*/

1

Data Types

Every value in a program is of a certain type, and that type determines what operations can be
performed on the value. Every type is categorized as being either a primitive type or a reference type.
Though Java has eight primitive types, only the three shown in the table below are used in AP Computer
Science A. All primitive data can be represented using literals, which are representations in code of exact
values.

Type Description Examples of literals
int integer numbers 3, -14, 21860

double floating point numbers 3.14, -1.0, 48.7662
boolean true and false true, false

Arithmetic Expressions

The primitive numeric types, int and double, can be used in arithmetic expressions. An arithmetic
expression includes numeric values combined with the arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
% modulus

When more than one operator is present in an expression, they are evaluated according to precedence
rules, where operators in the first group are evaluated before operators in the second group:

1) * / %
2) + -

For operators within the same group, they are simply evaluated in the order in which they appear in the
expression. Parentheses can always be used to override the default precedence rules. For example, the
expression 4 + 3 * 2 evaluates to 10, while (4 + 3) * 2 evaluates to 14.

When an arithmetic operation involves two int values, the result is an int. This is especially important to
keep in mind with division, where the result will truncate any non-integer part. For example, 7 / 4
evaluates to 1, not 1.75 as might be expected. If an operation involves at least one double value, the
result will be a double. In particular, division will behave as expected mathematically.

Variable Declaration and Assignment

Besides using literal expressions, most programs will also use variables to represent data. A variable is a
name that is associated with a piece of computer memory that stores a value. Once a variable has been
declared and assigned a value, it can be used in any situation that the corresponding literal value can be
used.

Since every value has a type, every variable has a type as well. Every variable that is used in a program
must be declared as being of a certain type. A variable declaration statement consists of a type followed

2

by a name. For example, the statement int age; declares a variable called age that will be used to
store an int value.

Once a variable has been declared, it can be used in an assignment statement. An assignment statement
has a variable on the left side of an equal sign, and an expression on the right side. Note that the
declaration of a variable can be combined with an assignment statement, so that the following are
equivalent:

int age;
age = 18; int age = 18;

The value of a variable can be changed by simply using it in another assignment statement:

double fin = 3.2;
System.out.println(fin); // prints 3.2
fin = 4.5 – 5.1;
System.out.println(fin); // prints -0.6

If a variable is intended to refer to a value that will never change, it can be declared using the final
keyword. It can be assigned a value as usual, but then will never be able to be changed again:

final int x = 5;
x = x - 2; // this line will cause a compiler error

Compound Operators

A common operation in many programs is to retrieve the value of a variable, update it using an arithmetic
operation, and storing the result back in the same variable. For example, the statement x = x * 5 will
update the variable x so that its new value is five times its original value.

For every arithmetic operator, there is a corresponding compound operator that corresponds to exactly
this type of operation.

Compound operator Example statement Equivalent to…
+= x += 3 x = x + 3
-= x -= 1 x = x – 1
*= x *= 2 x = x * 2
/= x /= 10 x = x / 10
%= x %= 10 x = x % 10

Adding one and subtracting one from a variable are referred to as increment and decrement operations,
respectively, and correspond to additional shortcut operators in Java. Increment and decrement, then, can
each be done in three ways:

Increment x++ x += 1 x = x + 1

Decrement x-- x -= 1 x = x - 1

3

Casting

Values of a certain type can only be stored in a variable of that type. The following statements will cause
a compiler error, since the right side is 6.3, a double value, while the variable on the left is declared to
be of type int:

int myVariable = 6.3;

The casting operators (int) and (double) can be used to create temporary values converted to
another type. Casting a double to an int results in truncation. For example, if the double variable
points has the value 12.8 the expression (int)points will evaluate to 12, making the following
statement legal:

int x = (int)points;

In some cases, int values will automatically be cast to double value. This makes it legal to store an int
value in a double variable, as in the following example:

int x = 10;
double y = 2 * x + 3; // y will store the value 23.0

Similarly, when calling a method that declares a double parameter, it is legal to pass an integer value in
as the actual parameter.

Free Response Tip
Be careful about storing accumulated values in an int
variable, especially if the task requires you to find an
average. Either store the accumulated value in a double
variable, or be sure to cast to a double before dividing to
find the average. Otherwise, the calculated average will be
truncated, even if the result is stored in a double variable.

Suggested Reading
• Hortsmann. Big Java: Early Objects, 6th edition. Chapter 4.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 2.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 2.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapters 2 and 4.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 2.

4

Sample Primitive Types Questions

Consider the following code segment.

int x = 9;

int y = 2;

int z = 1;

System.out.println(x / y * 1.5 - z);

What is printed when the code segment is executed?

A. 5
B. 5.0
C. 5.75
D. 8
E. 9

Explanation:

The correct answer is choice B. In the arithmetic expression, division and multiplication have the highest
and identical precedence and will be evaluated left-to-right. 9/2 evaluates to 4 (integer division). 4
multiplied by 1.5 evaluates to 6.0 (a double data type). 6.0 – 1 evaluates to 5.0.

What is the output of the following code segment?

double a = 3.6;

int b = (int)a + 2;

double c = b;

System.out.print(a + " " + b + " " + c);

A. 3.6 5 5.0
B. 3.6 6 6.0
C. 3.6 6 6
D. 3.6 5 5
E. 3.6 5.0 6

Explanation:
The correct answer is A. The first line of the code segment assigns the value 3.6 to the variable a. The
variable a, typecast as an int, evaluates to 3—the expression 3 added to 2 evaluates to 5, which is
assigned into b. 5 is assigned into variable c, but is automatically widened into the double data type, 5.0.

Consider the following code segment.

int a = 8;

System.out.print("*****");

5

System.out.println(a);

System.out.println(a + 2)

System.out.println("*****");

What is printed when the code segment is executed?

A.

*****8
10

B.

*****810*****

C.

8
10

D.

8
10*****

E.

810

Explanation:
The correct answer is A. The difference between System.out.print and
System.out.println, is that System.out.println advances the cursor to the next line (printing
a newline) immediately after printing the specified argument. In this correct answer, first a row of five
asterisks is printed without a newline, then the value of the variable a is printed with a newline, then the
value of the expression a+2 is printed with a newline, and finally a row of five asterisks is printed with a
newline.

6

Using Objects
On your AP exam, 5–7.5% of questions will cover the topic Using Objects.

As mentioned, all values in Java belong to either a primitive type or a reference type. The numeric
primitive types were covered in the previous section. In this section, we will discuss reference types.

An object is a compound value that has attributes, or data, and methods that can access or manipulate the
attributes. A class is a blueprint, or template, for the objects of a certain type. A class specifies what
attributes and methods an object will have.

Constructing and Storing Objects

An object is created from a class by calling the class constructor along with the new keyword. The name of
a constructor is the same as the name of the class it belongs to, and it is followed by a (possibly empty) list
of values. These values are parameters, and they represent initial values that will be used to create the
object.

The signature of a constructor consists of the name of the constructor along with the list of types of
parameters that it expects. When calling the constructor, the parameter list provided must match the
signature. A class may define multiple constructors as long as their signatures differ; in such a case, the
constructor is said to be overloaded.

For example, the Rectangle class from the Java standard library contains, among others, the following
two constructors:

Rectangle(int width, int height)
Rectangle(int x, int y, int width, int height)

The following would be valid constructor calls:

new Rectangle(5, 6) // calls the first constructor
new Rectangle(-1, 2, 3, 8) // calls the second constructor

However, the following would not be valid:

new Rectangle(3.2, 1) // invalid since the first parameter is double
new Rectangle(1, 2, 3) // invalid since it has three parameters

An object needs to be stored in a variable whose type is compatible with the class the object belongs to. In
most cases, the type of the variable will exactly match the type of the object. An exception is discussed in
the section on inheritance.

A complete statement to construct and store a rectangle object, then, looks like this:

Rectangle myRectangle = new Rectangle(5, 6);

A variable that refers to an object, as opposed to a primitive value, is called a reference variable. The
name comes from the fact that the memory associated with it does not store the object itself, but rather a

7

reference to the object; that is, the location in memory where the object exists. The special value of null is
reserved for reference variables that do not contain a reference to any actual object.

Calling Void Methods

Interaction with objects is done primarily by calling their methods, which define what the object can do,
and what can be done with it. As with constructors, every method has a signature. The signature of a
method consists of its name along with a (possibly empty) list of the types of parameters it defines.
Methods can be overloaded. That is, multiple methods with the same name may exist in a class, as long as
their signatures are different.

When a method is called, the execution of the program is interrupted, and control is transferred to the
method. When the method is complete, execution continues at the method call. Some methods return a
result when they are complete, in which case that value is available when execution continues.

Other methods, known as void methods, do not return a value, and therefore can only be called as
standalone statements, rather than as part of an expression. A method is called by using the dot operator
between the name of the object and the name of the method, followed by a list of parameters in
parentheses.

For example, the Rectangle class defines a void method with signature grow(int h, int v). If
the variable myRectangle stores a reference to a Rectangle object, the following is a valid call to
the grow method:

myRectangle.grow(4, 4);

Note that a method cannot be called on a null value, so in the previous example, if myRectangle
was null, the statement shown would cause a NullPointerException to be thrown.

Calling Non-Void Methods

When a method is not void, it has a return type. The method returns a value, and the method call
expression evaluates to this value. Since it has a value, it can be used as part of an expression in place of
any value of the specified type.

For example, the method getHeight() in the Rectangle class returns a value of type int.
Therefore, a call to the getHeight method can be used in place of an integer value in any expression.
If the variable myRectangle refers to a Rectangle object, then the following is a valid statement:

int someValue = 2 * myRectangle.getHeight() + 1;

If, in addition to returning a value, a method has side effects, there may be instances when you do not care
about the returned value. If you only care about the side effects of a method, it can be called as if it were
a void method, even if it returns a value. This means that the following statement is legal, although it may
not be useful in many situations:

myRectangle.getHeight();

8

Strings

A string is a sequence of characters. String literals are enclosed in double quotes, as in "Hello", "32",
and "". Notice that in the second example, the value is a string, even though it contains numeral
characters. The last of these examples is referred to as the empty string.

Strings represent an exception to the general rule of object construction. Since they are so common, the
constructor does not have to be explicitly called with the new keyword as with all other objects. Rather,
they can be constructed by simply using literal values. Strings can be combined, or concatenated, using the
+ operator. The following example shows the creation and concatenation of strings.

String str1 = "AP";
String str2 = "Exam";
String combined = str1 + " " + str2; // combined will store the string
"AP Exam"

When primitive values are concatenated with strings, they are automatically cast to strings. Therefore, the
expression "I am " + (14 + 4) + " years old" evaluates to the string "I am 18 years
old".

An escape sequence is a series of characters beginning with a backslash that has special meaning in Java.
The following table shows the three escape sequences used in AP Computer Science A.

Escape sequence Meaning
\" double quote character
\\ backslash character
\n new line character

The characters in a string are classified by their position, or index. The indices start at 0, so that in the
string "Hello", the "e" character is at index 1. Any attempt to refer to a character at an invalid index
will result in a StringIndexOutOfBoundsException being thrown.

The following table shows the methods that are included in the AP Computer Science A exam.

Method/Constructor Description
String(String str) constructs a new string that is identical to str
int length() returns the number of characters in the string
String substring(int from, int to) returns a new string consisting of the characters

that range from index from to index to - 1
String substring(int from) returns a new string consisting of the characters

beginning at index from and continuing to the
end of the string

int indexOf(String str) returns the index of the first occurrence of str
within the string, if any, and -1 otherwise

boolean equals(String other) returns true if the string is equal to other, and
false otherwise

int compareTo(String other) returns a negative value if the string comes
before other, a positive value if the string
comes after other, and 0 if the two are equal

9

The charAt method is not covered; retrieving a single character (as a string) at index n can be
accomplished by calling substring(n, n+1).

It is important to note that strings are immutable. They have no mutator methods. Methods such as
substring return a new string, and do not modify the original.

Wrapper Classes

There are various circumstances in which it is more convenient to work with objects rather than primitive
values (see the section on ArrayList for an example). Because of this, Java provides the wrapper
classes Integer and Double. Each of these classes has a constructor that accepts a primitive value of
the appropriate type, and a method that returns the primitive value. The Integer class also provides
static fields that represent the maximum and minimum values that can be represented by an int.

Integer
Integer(int value)
Constructs an Integer object with the
specified value
int intValue()
Returns the stored int value
Integer.MAX_VALUE
The maximum value that can be represented
by an int
Integer.MIN_VALUE
The minimum value that can be represented
by an int

Double
Double(double value)
Constructs a Double object with the
specified value
double doubleValue()
Returns the stored double value

The Java compiler has features called autoboxing and unboxing that automatically convert between these
wrapper classes and the corresponding primitive types. This makes it unnecessary to explicitly construct
Integer or Double objects, and to call their intValue or doubleValue methods, respectively. In
practice, then, when a method expects a double, a Double can be passed, and vice versa.

Static Methods and Math

A static method is a method that is called using the name of the class to which it belongs, rather than an
object. The Math class is an example of a class that contains only static methods. The methods you are
expected to know are in the following table.

Method Description
int abs(int x) Returns the absolute value of x
double abs(double x) Returns the absolute value of x
double pow(double b, double e) beReturns
double sqrt(double x) Returns the square root of x
double random() Returns a value in the interval [0,1)

10

Free Response Tip
When writing code in a free response question, think
carefully about whether every method you call is static
or not. If it is static, make sure it is preceded by a class
name. If not, make sure it is preceded by an object
name. The only time you can call a method without any
dot operator is when you are calling a method within
the same class.

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 2.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapters 5 and 6.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 3.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 3.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapters 2 and 4.

11

Sample Using Objects Questions

Consider the following code segment.

public class Toy

{

private String name;

public Toy()

{

name = "Venus";

}

public Toy(String s)

name = s;

}

public void printName()

{

System.out.println("This toy is named: " + name);

}

}

Which of the following statements correctly creates an instance of a Toy object named Mars? Assume that
each of the choices exist in a class other than Toy.

A.
Toy t = new Toy();
t.name = “Mars”;

B.
Toy t = new Toy(“Mars”);

C.
Toy t;
t = “Mars”;

D.
Toy t = “Mars”;

E.
String s = “Mars”;
Toy t = s;

12

Explanation:
The correct answer is B. Every object is created using the keyword new followed by a call to one of the
class’s constructors. Choice A is incorrect because name is a private field and cannot be referenced outside
of the class Toy. Choices C, D, and E are incorrect because a constructor is never called using the keyword
new to instantiate the class Toy.

Consider the following code segment.

String s1 = "Hello";

String s2 = "World";

System.out.println(s1 + ", " + s2);

String s3 = new String("Hi");

s3 += ",\nWorld";

System.out.println(s3);

What is printed as a result of executing the code segment?

A.
Hello+, +World
Hi,\nWorld

B.
Hello, World
Hi,
World

C.
Hello
World
,
Hi
,
World

D.
HelloWorld,
Hi,
World

E.
Hello, World
Hi,\nWorld

13

Explanation:
The correct answer is B. The + operator is used to concatenate Strings in Java. String objects can either
be created by a literal String, or by the new operator. \n represents the newline character. The +=
operator concatenates onto the end of the specified String.

Which of the following is a code segment that would yield a compiler error?

A. double v = Math.pow((double)4, 3.0);
B. double w = Math.pow(4.0,0.0);
C. int x = Math.pow(4.0,3.0);
D. double y = Math.pow(4,3);
E. double z = Math.pow(4.0,3.0);

Explanation:
The correct answer is C. The Math.pow method returns a double, which cannot be automatically
narrowed into the int datatype. An int typecast is necessary. The code segment in choice A will compile
successfully; The double typecast is not necessary, but in this case, explicitly converts 4 to 4.0. The code
segment in choice B will compile successfully; a base raised to the exponent 0.0 will evaluate to 1.0. The
code segment in choice D will compile successfully; the Math.pow method takes two double
parameters. The int arguments are implicitly converted into double values. The code segment in choice
E will compile successfully; the Math.pow method takes two double parameters and returns a double
value.

14

Boolean Expressions and if Statements

About 15–17.5% of the questions on your AP exam will cover the topic of Boolean Expressions and if
Statements.

Boolean Expressions

A Boolean value is either true or false. Although these literals can be used, the more common way to
create Boolean values is using the relational operators with primitive values. The six relational operators
are <, <=, >, >=, ==, and !=. Any expression that evaluates to a Boolean value is called a Boolean
expression.

More complex Boolean expressions can be formed using the logical operators && (and), || (or), and !
(not).

&& A && B is true only when A and B are both true
|| A || B is true when at least one of A or B is true
! !A is true only when A is false

Two Boolean expressions are equivalent if they evaluate to the same truth value for all possible values of
their variables. De Morgan's Laws provide a common method for transforming Boolean expressions into
equivalent ones. The laws state that !(A && B) is equivalent to !A || !B, and that !(A || B) is
equivalent to !A && !B.

Comparing Objects

Recall that reference variables store references to objects, rather than the objects themselves. Because of
this, when objects are compared using == and !=, it is only the references that are being compared, not
the contents of the actual objects. That is, these operators only check if two references are aliases of each
other. Additionally, == and != can be used to check whether a reference variable is null.

Comparing objects themselves for equality can only be achieved if the class provides an equals method,
as we saw exists for String.

Free Response Tip

Only use == and != if you are either comparing primitive
values or checking to see if a reference variable is null. If
an object has an equals method, and you want to check if it
is not equal to another object, you can use the following
idiom: !obj1.equals(obj2).

15

if and if-else Statements

Control flow statements are used when a program needs to make decisions based on its current state. An
if statement allows the program to either execute or skip a section of code based on whether a Boolean
expression is true or false.

The syntax for an if statement is shown as follows:

if (expression) {
// one or more statements

}

If expression evaluates to true, the statements in the block (between the {}) are executed.
Otherwise, the statements in the body are skipped.

Optionally, an else clause can be added:

if (expression) {
// one or more statements

} else {
// one or more statements

}

If expression evaluates to true, the statements in the if block are executed. Otherwise, the
statements in the else block are executed.

For both the if and else blocks, if they consist of only a single statement, the curly braces can optionally
be omitted.

if-else-if Statements

To check for multiple possibilities, an if can be followed by one or more else if clauses.

if (expression1) {
// statements1

} else if (expression2) {
// statements2

} else if (expression3) {
// statements3

} else {
// statements4

}

In this code, there are four possible execution paths. Execution begins at the top. If expression1 is true,
statements1 is executed. Otherwise, if expression2 is true, statements2 is executed. If neither
of the first two expressions are true, but expression3 is, then statements3 is executed. Finally, if
none of the expressions are true, the else block is executed.

16

Note that there can be an arbitrary number of else if clauses, and that the else block at the end is
optional. If no else block is provided, and none of the expressions are true, then nothing will be
executed.

Free Response Tip
When writing if-else-if statements, keep in mind that
each expression is only evaluated if none of the previous
ones have evaluated as true yet; at most one of the
statement blocks will be executed. This contrasts with
consecutive if statements, where all of the Boolean
expressions will be checked, and many of the statement
blocks can potentially be run.

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 4.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 3.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 5.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 5.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 3.

17

Sample Boolean Expressions and if Statements Questions

Consider the following Boolean expression.

(temperature >= 20 && temperature <= 80) && (humidity <= .5)

Which of the following Boolean expressions are equivalent to the expression above?

I. (humidity <= .5) && (20 <= temperature <= 80)

II. (! (humidity > .5)) && (!(temperature < 20 || temperature > 80))

III. (20 <= temperature && temperature <= 80) && (humidity <= .5)

A. II only
B. III only
C. II and III only
D. I and III only
E. I, II, and III

Explanation:
The correct answer is C. The Boolean expression to consider in this question returns True if
temperature is between 20 and 80 inclusive, and humidity is less than or equal to .5. Following De
Morgan’s Laws, Boolean expression II is equivalent by checking if humidity is not greater than .5 and also
not outside of the range 20-80. 20 <= temperature is equivalent to temperature >= 20 in
Boolean expression III.

Consider the following code segment:

int score = 5;

if (score >= 2)

{

score = 1;

System.out.print("A");

}

else

{

System.out.print("B");

}

if (score <= 3)

{

18

score = 9;

System.out.print("C");

}

else

{

System.out.print("D");

}

System.out.print(score);

What is printed as a result of executing the code segment?

A. A1
B. BD5
C. BD9
D. AC9
E. ABCD9

Explanation:
The correct answer is D. There are two if-else blocks. In the first if-else block, the Boolean expression
evaluates to true (5>=2), and the if block is executed (prints A and assigns the value of 1 to the variable
score) and the else is skipped. In the second if-else block, the Boolean expression evaluates to true (1<=3),
and the if block is executed (prints C and assigns the value of 9 to the variable score) and the else is
skipped. The final value of score is 9. B and D are not printed because the Boolean expression in both if-
else blocks evaluates to true.

The following table maps a temperature in Fahrenheit to a qualitative description.

Temperature in Fahrenheit Description
90 or above Hot
70 – 89 Warm
45 – 69 Mild
44 or below Chilly

Which of the following code segments will print the correct description for a given integer temperature?

I.

if (temperature >= 90)

{

System.out.println("Hot");

}

else if (temperature >= 70)

19

{

System.out.println("Warm");

}

else if (temperature >= 45)

{

System.out.println("Mild");

}

else

{

System.out.println("Chilly");

}

II.

if (temperature <= 44)

{

System.out.println("Chilly");

}

else if (temperature <= 69)

{

System.out.println("Mild");

}

else if (temperature <= 89)

{

System.out.println("Warm");

}

else

{

20

System.out.println("Hot");

}

III.

if (temperature <= 44)

{

System.out.println("Chilly");

}

else if (45 <= temperature && temperature < 70)

{

System.out.println("Mild");

}

else if (70 <= temperature && temperature < 90)

{

System.out.println("Warm");

}

else if (90 <= temperature)

{

System.out.println("Hot");

}

A. I only
B. I and II only
C. II only
D. II and III only
E. I, II, and III

Explanation:
The correct answer is E. In a multiway condition statement, the first section of code is executed based on
whichever condition is first true. For any possible integer value, the same string will print in all three code
segments.

21

Iteration
On your AP exam, 17.5–22.5% of questions will cover the topic of Iteration.

while Loops

The while statement allows a code block to repeat as long as a condition is true.

while (expression) {
// one or more statements

}

In the previous code, the block will be executed if expression is true. After execution, the condition is
checked again, and if true, the block is executed again. This continues until the condition becomes false, at
which point the rest of the program continues. Note that if expression is false the first time it is
encountered, the body of the loop is never run.

It is important to make sure that the condition eventually becomes false, or the loop will be executed
infinitely. For example, consider the following code:

int x = 12;
while (x > 0) {
System.out.println("A");

}

This is an infinite loop, since the condition will always be true: x starts with a value of 12, and there is
nothing within the body of the loop that changes the value. Therefore, it will always be greater than 0. To
fix the problem, consider this change:

int x = 12;
while (x > 0) {
System.out.println("A");
x--;

}

With the addition of the x-- statement, the value of x is reduced by 1 each time through the loop.
Eventually, it will become 0, the condition will no longer be true, and the loop will stop.

for Loops

A for loop uses a variable to count the iterations of a loop. It has the following structure:

for (initialization; expression; increment) {
// statements

}

22

When the loop is first encountered, the initialization statement is executed. Then expression is
evaluated. If it is true, the loop body is executed. After execution, increment is executed, and
expression is evaluated again. This continues until expression is false, at which point the loop is
done.

In practice, the initialization statement usually consists of a variable declaration and assignment, and the
increment modifies that variable by adding or subtracting a fixed value, as in the following examples:

for (int i = 0; i < 5; i++) { … }

for (int count = 100; count >= 0; count -= 2) { … }

There are several standard algorithms that use for loops with which you should be familiar. These include:
• Identify the individual digits within an integer using a while loop, modulus, and division.
• Count the number of times that a criterion is met within a range of values.

There are many other such algorithms that involve arrays, which will be covered later.

Free Response Tip
When writing code, there are no absolute rules for deciding
when to use a while loop vs a for loop. Either kind of
loop can be used in any situation. However, while loops
are generally better for situations in which you don't know
in advance how many times the code needs to be executed,
and need to check a condition to know whether or not to
continue, whereas for loops are easier to use when you
can explicitly count the repetitions.

String Algorithms

Loops are often used in the context of processing strings. Combined with the indexOf and substring
methods, loops are essential for examination of different parts of strings. There are two particular patterns
that frequently occur.

for (int i = 0; i < myStr.length() – k + 1; i++) {
String subs = myStr.substring(i, i + k);
// do something with subs

}

In this code, the variable i is used to keep track of the index in a string. In each iteration, a substring of
length k is retrieved starting at index i. The substring can then be used as desired. For example, it could
be concatenated onto another string, or checked for equality with some target string. Note carefully the
value used in the loop condition: i < str.length() – k + 1. This is important for ensuring that
the substring method does not result in a StringIndexOutOfBoundsException.

23

The other common pattern is using a while loop together with the indexOf method:

int pos = myStr.indexOf(target);
while (pos > 0) {
// target string was found
pos = myStr.indexOf(target, pos + 1);

}

Here, a string is repeatedly searched for some target. When it is no longer found, the indexOf method
will return -1, which will cause the loop to terminate.

Nested Loops

When a loop is used in the body of another loop, it is referred to as a nested loop. Nested loops are often
used in more complex string and array algorithms and are very common with 2D arrays. They are also
commonly used for printing tabular data and patterns, as in this example:

for (int x = 5; x >= 1; x--) {
for (int y = 0; y < x; y++) {
System.out.print(y + " ");

}
System.out.println();

}

The result of executing this code will be the following:

01234
0123
012
01
0

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 6.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 4.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 5.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 5.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 5.

24

Sample Iteration Questions

Which of the following code segments correctly completes the line marked /* missing code */ in
the following method named reverse? The method takes a String argument and returns a new string
with the characters in the argument string reversed.

public static String reverse(String s)

{

String toReturn = "";

for (/* missing code */)

{

toReturn += s.charAt(i);

}

return toReturn;

}

A. int i = s.length(); i > 0; i--
B. int i = 0; i < s.length(); i++
C. char i : s
D. int i = s.length() - 1; i >= 0; i--
E. int i = 0; i < s.length() - 1; i++

Explanation:
The correct answer is D. Because the desired behavior of this method is to return a new string that is a
reversal of the characters in the argument, one algorithm is that the for loop should iterate from the last
character in the string to the first. The index of the last character is one less than the length of the string.
The update of the for loop decrements to count backwards. Choice A is incorrect because this loop
incorrectly throws an ArrayOutOfBounds exception during the first iteration of the loop. Because array
indices begin at 0, the index of the last character is one less than the length of the string. Choice B is
incorrect because this loop incorrectly iterates from the first character in the string to the last character.
Choice C is incorrect because this enhanced for loop incorrectly extracts every character from a string
instead of its position value. Choice E is incorrect because this loop incorrectly iterates from the first
character in the string to the character before the last.

Consider the following code segment.

int i, j;

for (i = 1; i <= 3; i++)

{

System.out.print(i + " ");

j = i;

25

while (j > 0)

{

System.out.print(j + " ");

j--;

}

}

What is printed as a result of executing the code segment?

A. 1 1 1 2 2 1 1 2 3 3 2 1
B. 1 1 0 2 2 1 0 3 3 2 1 0
C. 1 1 2 2 1 3 3 2 1
D. 1 1 2 2 3 3
E. 1 1 0 2 1 3 2 1

Explanation:
The correct answer is C. When a loop is placed inside of another loop, the inner loop must complete all of
its iterations before the outer loop can continue. In this code segment, the outer loop iterates and prints 1 2
3. After 1 is printed, the inner loop prints 1; after 2 is printed, the inner loop prints 2 1; after 3 is printed,
the inner loop prints 3 2 1.

Consider the following code segment, which includes line numbers.

1 int i;

2 for (i = 1; i <= 100; i += 2)

3 {

4 if (i >= 10 && i < 100)

5 {

6 System.out.print(i + " ");

7 }

8 }

Explain how the result of the following program code changes, given that Line 2 is changed to:

for (i = 100; i >= 1; i -= 2)

A. The initial program prints all two-digit odd numbers in increasing order; the modified program prints all
even numbers from 100 to 2 in decreasing order.
B. The initial program prints all two-digit even numbers in increasing order; the modified program prints all
two-digit odd numbers in decreasing order.

26

C. The initial program prints all two-digit even numbers in increasing order; the modified program prints
all two-digit even numbers in decreasing order.
D. The initial program prints all two-digit odd numbers in increasing order; the modified program prints all
two-digit even numbers in decreasing order.
E. The initial program prints all odd numbers from 1 to 99 in increasing order; the modified program prints
all even numbers from 100 to 2 in decreasing order.

Explanation:

The correct answer is D. Line 4 of the code segment enforces the condition that only two-digit integers are
printed in Line 6. The initial program’s for loop iterates over every odd integer from 1 to 100; the
modified program’s for loop iterates over every even integer from 100 to 1.

27

Writing Classes
About 5–7.5% of the questions on your AP exam will cover the topic of Writing Classes.

Class Structure and Visibility

The basic structure of a class is shown below.

public class MyClass {

// instance variables

// constructor

// methods
}

The instance variables are the data, or attributes, associated with an object. Constructors are the means by
which the objects are constructed, and methods are the behaviors that the objects have available to them.

Every declaration in a class, whether it is an instance variable, constructor, or method, has a visibility
modifier attached to it. The visibility modifier can be public or private. When something is declared
as public, it can be directly accessed from outside of the class. Declaring something as private, on
the other hand, restricts access to code inside the class itself. For the purposes of the AP Computer Science
A exam, the following guidelines apply:

• All instance variables should be private
• All constructors should be public
• Methods may be public or private

Encapsulation refers to the idea that an object should keep the details of its internal workings hidden.
Declaring instance variables as private, and only allowing access to them via carefully designed
public accessor and mutator methods, ensures that this principle is followed.

Other than the addition of the visibility modifier, the declaration of an instance variable follows the same
syntax as that of a local variable:

private String myName;

private boolean isOpen;

28

Free Response Tip
Make sure you never declare a public instance variable.
Although doing so will not result in any sort of error, it is
considered very poor programming practice, and will often
be penalized in free response questions even if your code
works flawlessly.

Constructors

The purpose of a constructor is to set up an object with some initial state, and generally consists of
assigning values to the instance variables. Constructors can have one or more parameters. As mentioned
previously, constructors can be overloaded. That is, a class can have multiple constructors, as long as they
all have different signatures. A constructor that does not have any parameters is referred to as a default
constructor.

If a class has no constructor, or if a constructor does not explicitly set an instance variable, the variable will
automatically be given a default value. The default value for numeric types is 0, for Boolean values it is
false, and for reference types it is null.

Documentation

In addition to single-line and multi-line comments, Java has a third comment syntax, which generates
Javadoc documentation. These comments are enclosed by /** and */, and are used to document the
description, purpose, and conditions associated with a class, instance variable, constructor, or method.

A precondition is a condition that must be true immediately prior to a method being called. If it is not true,
the method should not be expected to work as described and may cause an error to occur. In other words,
it is the responsibility of the programmer calling the method to ensure that the precondition is satisfied
before calling the method; the condition will not actually be checked within the method.

A postcondition, on the other hand, describes something that is guaranteed to be true immediately after the
execution of the method. It often describes the behavior of the method by answering two questions:

• What does this method return?
• What will the state of the object be when this method is complete?

Free Response Tip
Pay very close attention to the preconditions and
postconditions given in the narratives for free response
questions. They are usually very detailed and exactly
describe the method that writing is expected to do.
Preconditions will save you from having to write code to
check conditions, and postconditions will help you ensure that
your code does what it is meant to do.

29

Writing Methods

A method is a block of code that exists within a class and has access to the instance variables. The syntax
for writing a method is as shown:

visibility returnType methodName(parameters) {

// method body

}

visibility can be either public or private. Most methods are public, but there may be
situations in which it makes sense to keep the accessibility of a method limited to its class. The return type
specifies what type of value, if any, the method will return. If the method will not return any value, the
keyword void is used in place of the return type.

A method is called an accessor if it retrieves and returns, but does not modify, data associated with the
class. This may be the value of an instance variable, or a computed value derived from several instance
variables and parameters. To return a value from a method, the statement return expression; is
used. It is important to note that a return statement will immediately terminate the execution of the
method. Any code that follows it will never be reached, and if it is within a loop there will be no further
iterations.

Free Response Tip
Consider whether the method you are writing is void or
not. If it is void, make sure you do not include a return
statement anywhere in your code. On the other hand, if it is
not void, you must make sure that every possible execution
path includes a return statement.

A mutator method changes the state of the object in question by modifying one or more of its instance
variables. Recall that the principle of encapsulation requires that an object keeps its instance variables
private. Mutator methods are how an object can provide a publicly accessible means of allowing limited
modification, while maintaining control of the implementation details.

A common method implemented in many classes is the toString method. This method returns a string
and does not have any parameters. It is intended to return a string description of the object in question,
usually including some or all of the values of its instance variables. Of note, whenever an object reference
is passed to the System.out.print or System.out.println method, the toString method of
the object is called automatically, and the returned string is printed to the console.

If an object is passed as a parameter to a method, the method can only access its private variables if it is
of the same type as the enclosing class. Otherwise, it is limited to using publicly accessible methods from
the parameter object.

The parameter as declared within a method header is referred to as a formal parameter, and the value
passed in when the method is called is called an actual parameter. Consider the following example of a
method and a call to it:

30

public void doSomething(int x) {
System.out.println(x);

}

doSomething(3);

The formal parameter here is x, while the actual parameter is 3.

In Java, parameters are always passed by value. This means that if a variable is specified as an actual
parameter, the method receives a copy of the variable, not the variable itself. If the parameter is a
primitive value, this means that the actual parameter can never be modified from within the method. If the
parameter is a reference type, however, the formal parameter ends up being an alias of the actual
parameter. In this case, the underlying object may be able to be changed within the method. However, as
a general rule, it is considered good practice to avoid mutating an object passed to a method as a
parameter, unless the postconditions of the method require that it be done.

Scope and Access

The scope of a variable refers to the code within which it is accessible. There are several important
principles related to scope that you need to know:

• A local variable is one that is declared within the body of a constructor or method. These variables
are not declared as either public or private, and they are only accessible within their enclosing
blocks.

• Instance variables declared in a class are accessible throughout the entire class.
• If an instance variable and a local variable have the same name, the local variable is said to

shadow the instance variable. Within the scope of the local variable, the variable name will refer
to it, and not to the instance variable.

• Parameters behave similarly to local variables, in that they are only accessible in the constructor
or method within which they are declared.

Within a constructor or non-static method, there is always an additional variable available, called this,
which behaves similarly to an instance variable. It is a reference to the current object, and it can be used to
pass the object as a parameter to a method.

Static Variables and Methods

Static variables and methods are associated with a class, rather than with instances of the class, and are
declared by including the static keyword. For example:

private static int count;
public static double getValue() { … }

Static methods can be either public or private, but they only have access to static variables that cannot
read or change any instance variables. In particular, they do not have access to the this keyword, as
discussed in the previous section.

31

Suggested Reading

• Horstmann. Big Java: Early Objects, 6th edition. Chapter 3.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 8.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 4.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 8.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapters 9 and 10.

Sample Writing Classes Questions

Consider the following instance variables and method.

private int[] numbers;

private int value;

/**

* Precondition: numbers contains int values in no particular order

*/

public void mystery()

{

for (int i = 0; i <= numbers.length - 1; i++)

{

if (numbers[i] < value)

{

numbers[i] = 0;

}

}

}

Which choice best describes the postcondition of the method mystery?

A. All elements in the array will be set to 0.
B. Elements in the array will have the same value as they had before the method.
C. Elements in the array are set to zero if they exceed the variable value.
D. All elements in the array will be set to 0, except for the last element.
E. Elements in the array are set to zero if the variable value exceeded them.

32

Explanation:
The correct answer is E. The if statement checks if the value of an array element is less than the variable
value. If it is, that element will be set to 0. Choice A is incorrect because the if statement may only be
true of some elements in the array. Choice B is incorrect because elements in the array will be set to 0 if
their value is less than the variable value; it cannot be guaranteed that the array will be unchanged.
Choice C is incorrect because the if statement checks if the value of an array element is less than the
variable value, not greater than it. Choice D is incorrect because the for loop iterates over every
element in the array.

Consider the following code segment.

class Classroom

{

static int numAllStudents;

static int numClasses;

int numStudents;

public Classroom(int n)

{

numStudents = n;

numAllStudents += numStudents;

numClasses++;

}

/* missing code */

}

Which of the following methods can be used to replace /* missing code */ to correctly print out the
average number of students in each classroom?

I.
public double avg()

{

return (double)this.numAllStudents / this.numClasses;

}

33

II.
public double avg()

{

return (double)numAllStudents / numClasses;

}

III.
public static double avg()

{

return (double)numAllStudents / numClasses;

}

A. I only
B. II only
C. III only
D. I and II only
E. II and III only

Explanation:
The correct answer is E. Method II is an example of an instance method. Instance methods can access the
static variables of a class. Method III is an example of a static method, which also can access the static
variables of a class. The this keyword refers to the current object and its instance variables.
numAllStudents and numClasses are static variables and cannot be referenced from the instance
keyword this.

Consider the following declaration for a class that will be used to represent rectangles in the xy-
coordinate plane.

public class Rect
{

private int x; // x-coordinate of top-left point of rect

private int y; // y-coordinate of top-left point of rect

private int width; // width of rect

private int height; // height of rect

public Rect()

{

x = 0;

y = 0;

34

width = 10;

height = 15;

}

public Rect(int a, int b, int ww, int hh)

{

x = a;

y = b;

width = ww;

height = hh;

}

}

Which of the following methods correctly implements a method named isGreater that takes a Rect
argument and returns true if its area is greater than the area of the Rect parameter, and false
otherwise?

A.

public boolean isGreater(int ww, int hh)

{

if (width * height > ww * hh)

{

return true;

}

else

{

return false;

}

}

35

B.

public boolean isGreater(Rect other)

{

return Rect.width * Rect.height > other.width * other.height;

}

C.

public boolean isGreater(int w, int h, int ww, int hh)

{

if (w * h > ww * hh)

{

return true;

}

else

{

return false;

}

}

D.

public boolean isGreater(Rect other)

{

return width * height > other.width * other.height;

}

E.

public boolean isGreater(int ww, int hh)

{

return this.width * this.height > ww * hh;

}

36

Explanation:
The correct answer is D. Methods can access the private data of a parameter that is a reference to an
object that is the same type as the method’s enclosing class. Choice A is incorrect because this method has
two int parameters, not one Rect parameter. Choice B is incorrect because Rect.width and Rect.height are
not legal references. Width and height are instance variables, not static variables, and cannot be
referenced with the Rect classname. Choice C is incorrect because this method has four paramenters, not
one Rect parameter. Choice E is incorrect because this method has two int parameters, not one Rect
parameter.

37

Arrays

About 10–15% of the questions on your AP exam will cover the topic of Arrays. An array is an object that
allows a single variable to refer to multiple values of a particular type.

Creating Arrays

An array type is created by appending [] to any other type. For example, int[] is the type for an
array of integers, and Rectangle[] is the type for an array of Rectangle objects. Instead of using
explicit constructor calls, arrays are created using the new keyword followed by an expression that
specifies the type and size of the array.

int[] nums = new int[5];

Rectangle[] myRectangles = new Rectangle[12];

The first line will create an array with enough space for 5 integers, and the second line will create an
array with enough space for 12 Rectangle objects. Once an array is created, its size can never be
changed.

When all the values that are to be stored in an array are known, an initializer list can be used to create
the array. In this case, the size of the array is omitted, since it is automatically inferred from the list
provided. For example, the following line of code will create an array of length 5 that stores the integers
shown:

int[] pi = new int[] {3, 1, 4, 1, 5};

When an array is created without an initializer list, all its elements are automatically initialized with
default values. Numeric types are initialized to 0 (or 0.0), Booleans to false, and reference types to
null.

Array Access and Traversal

Every element in an array has an index. The smallest valid index in every array is 0, and the largest is one
less than the length of the array. For example, if an array is initialized with the list { 42, 18, 33,
16, 7, 60 }, it might be represented like this:

0 1 2 3 4 5
42 18 33 16 7 60

Indices are enclosed in square brackets following the name of the array and are used to access and
modify elements in an array. Use of an index outside of the valid range will cause an
ArrayIndexOutOfBoundsException to be thrown.

38

Traversing an array refers to systematically accessing all elements within it. This is usually accomplished
using a for loop, although a while loop can also be used. The length attribute of an array provides
the length of the array, so a typical for loop looks like this:

for (int i = 0; i < myArr.length; i++) {
// myArr[i] will refer to the element at index i in myArr

}

Free Response Tip
Be very careful not to go out of bounds when traversing an
array. Consider the length of the array and whether you
are using < or <= in your loop condition. Also keep in
mind whether you are accessing only a single index within
the loop (such as myArr[i]), or multiple indices
(myArr[i] and myArr[i+1], for example).

Enhanced for Loops

Another form of a for loop, referred to as an enhanced for loop, or for-each loop, can be useful for
traversing arrays. The syntax for an enhanced for loop is simpler than that of a regular for loop:

for (type name : list) {
// loop body

}

In this code, type is the data type of the elements of the array, name is a variable that will refer to each
element, and list is the name of the array itself. In each iteration of the loop, an element of the array is
assigned to the variable name. Instead of referring to myArr[i], the code in the loop body can simply
refer to name.

There are two very important limitations to remember about enhanced for loops:
• The loop body does not have access to the index. This means that it can only refer to a single

element within the array, and that it cannot be used if the index itself is needed.
• The variable name in the previous code is a local variable. If it is modified, the underlying

element in the array does not change. Therefore, enhanced for loops can never be used to
modify an array.

Standard Array Algorithms

There are several standard algorithms that traverse arrays and process the elements within:
• Find a maximum or minimum in an array
• Compute the sum or mean of the values in an array
• Determine whether some or all of the elements in an array have a certain property
• Count the number of elements in an array satisfying a certain condition
• Access all pairs of consecutive elements

39

• Shift or rotate all elements in an array to the right or left

You should be familiar with all of these algorithms and be able to implement them on arrays of many
different types of values and objects.

Free Response Tip

Be aware of the asymmetric conditions involving "at least one
element" and "all elements" problems. If you are checking to see if
at least one element satisfies a certain condition, you can return
true from a method as soon as you find a single match, but have
to allow the loop to complete all its iterations before you can return
false. This situation is reversed when you are checking to see if
all elements satisfy a condition. In that case, you can return false
as soon as you find a single element that does not satisfy the
condition but must wait until the loop completes before you can
return true.

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 7.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 7.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 8.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 7.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 7.

40

Sample Arrays Questions

Consider the following code segment.

int[] ary = {2,3,5,7,11,13};

int twoDigitCount = 0;

for (int item : ary)

{

if (item >= 10)

{

twoDigitCount++;

item = item - 10;

}

}

What are the contents of the array ary after this code segment executes?

A. 2 3 5 7 1 3
B. 2 3 5 7 11 13
C. The loop never terminates.
D. 1 2 3 4 5 6
E. 0 1 2 3 4 5

Explanation:
The correct answer is B. Assigning a new value to the enhanced for loop variable does not change the
value stored in the array. The last two values in the array stay the same. There is no counting variable as
there is in the traditional for loop.

The method swap takes three arguments: an int[] array and two integer index values. The method
shall swap the two values at the specified indices.

/** @param b an int value such that b is a valid index in array a
* @param c an int value such that c is a valid index in array a
*/
public static void swap(int[] a, int b, int c)
{

/* missing code */
}

Which of the following choices correctly completes the code segment marked /* missing code
*/.?

A.
int temp = a[b];
a[b] = a[c];

41

a[c] = temp;

B.
a[b] = a[c];
a[c] = a[b];

C.
int temp = a[b];
a[c] = a[b];
a[b] = temp;

D.
int temp = a[c];
a[c] = temp;
a[c] = a[b];

E.
a[c] = a[b];
int temp = a[b];
a[c] = temp;

Explanation:
The correct answer is A. A temporary variable is needed to hold the value of the array at index b. The
value of index c is then copied into the array at index b. Finally, the temporary value is copied into the
array at index c, completing the swap. Choice B is incorrect because a temporary variable is not used and
the original value of the array at index b is overwritten. Choice C is incorrect because the second
statement in the swap algorithm is reversed; the original value of the array at index c is never swapped.
Choices D and E are incorrect because a temporary variable is not used correctly; the original value of the
array at index c is never copied to the correct location.

private int[] numbers;

/** Precondition: numbers contains int values

* in no particular order.

*/

public void mystery(int num)

{

int i = 0;

while (i < num.length)

{

if (i % 2 == 1)

num[i] += 10;

42

else

num[i] -= 10;

i++;

}

}

Which of the following best describes the contents of numbers after the following statement has been
executed?

mystery(numbers);

A. The contents of numbers are unchanged.
B. The Boolean expression has a compiler error. length is a method and should have parenthesis, like:
num.length()
C. The contents of numbers are replaced by all zeros.
D. All elements except the last one, are modified in the following way: elements at an odd index have 10
added to them, and elements at an even index are subtracted by 10.
E. All elements are modified in the following way: elements at an odd index have 10 added to them, and
elements at an even index are subtracted by 10.

Explanation:
The correct answer is E. The array loops from index 0 to the final index in the array. Odd index values
are identified by the modulus operation and the check of whether they are not evenly divisible by 2.
Choice A is incorrect because the value of the array argument is a reference, so changes to num have the
effect of also changing numbers. Choice B is incorrect because. num.length is a field reference for
arrays, not a method; no set of parenthesis is appropriate. Choice C is incorrect because the content of
each element in the array is modified by either +10 or -10, not 0. Choice D is incorrect because
num.length returns the count of the number of elements in the array, which is one greater than the last
index value.

43

ArrayList
About 2.5–7.5% of the questions on your exam will fall under the ArrayList category.

Like an array, an ArrayList is an object that stores multiple elements of the same type. Unlike an
array, however, its size is not set at creation and can change dynamically.

Creating and Storing ArrayList Objects

An ArrayList has type ArrayList<E>, where E is the reference type of object it will store. To
create an ArrayList, call its default constructor:
ArrayList<E> myList = new ArrayList<E>();

This will create and store an empty ArrayList intended to store objects of type E.

ArrayList Methods

As with arrays, the elements in an ArrayList are indexed starting at 0. ArrayList includes many
methods for storing, accessing, and modifying the elements stored within the list. The table below shows the
most important ones.

Method Description
int size(int x) Returns the number of elements in the list
boolean add(E obj) Adds obj to the end of the list and returns true
void add(int index, E obj) Adds obj to the list at position index, moving all

elements previously at positions index and
higher to the right

E get(int index) Returns the element at position index
E set(int index, E obj) Replaces the element at position index with obj,

and returns the removed element
E remove(int index) Removes and returns the element at position

index, moving all elements at position index +
1 and higher to the left

Note the use of the type E as a parameter type and return type in many of these methods. Keep in mind
that this is the type that was used in the declaration and creation of the ArrayList. For example,
consider the following ArrayList:

ArrayList<String> studentNames = new ArrayList<String>();

In this example, the set method of studentNames has parameters of type int and String, and
returns a String.

44

ArrayList Algorithms

The standard algorithms used to traverse and process arrays apply to ArrayList objects as well. In
particular, both standard and enhanced for loops can be used for traversal. There are, however, a few
special considerations and modifications to keep in mind:

• The length of an ArrayList is obtained from its size() method.
• Accessing the element at position i uses the .get(i) method call.
• Since the size of an ArrayList can change by adding and removing elements, the algorithms

previously discussed can be extended to perform these actions.
• The size of an ArrayList cannot be changed within the body of an enhanced for loop; this

will result in an error.

Free Response Tip

When removing an element from an ArrayList in the
context of a for loop, be very careful to adjust for the
removal, or an element will be skipped. If you are using a
typical "counting up" loop, make sure to decrement the loop
variable after each removal. Alternatively, change the loop
to iterate backwards through the list; this will ensure that
removals do not affect the remaining iterations.

Searching and Sorting

Searching and sorting lists of data are classical computer science problems, and as such, many algorithms
have been developed to address them.

Sequential search, or linear search, is a standard and universal algorithm. It can be used on any type of list.
It proceeds by sequentially checking each item in a list to see if it matches the target item. As soon as a
match is found, the search can terminate. If the end of the list is reached with no match having been found,
the result is negative.

Selection sort and insertion sort are algorithms that use nested loops to sort lists. Exact comparisons and
computations of their running times are beyond the scope of AP Computer Science A, but informal analyses
can be conducted by examining their loops and counting the number of iterations they execute with sample
data.

More sophisticated algorithms for both searching and sorting will be discussed later in the context of
recursion.

45

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 7.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 7.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 5.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 7.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 7.

46

Sample ArrayList Questions

Consider the following code segment.

ArrayList<String> numbers = new ArrayList<String>();

numbers.add("zero");

numbers.add("one");

numbers.add(“2”);

numbers.add(1, "three");

numbers.set(2, "four");

numbers.add("five");

numbers.remove(0);

numbers.remove(0);

Which of the following best describes the contents of numbers after the code segment has been
executed?

A. {“zero”, “one”, “three”, “four”, “five”}
B. {“four”, “2”, “five”}
C. {“three”, “four”, “one”, “five”}
D. {“2”, “three”, “four”, “five”}
E. {“zero”, “three”, “one”, “five”}

Explanation:

The correct answer is B. First, zero and one are appended onto an empty ArrayList. The size of the list
(2) is then appended to the ArrayList as a string (“2”). Then three is inserted in between zero and one.
four replaced the value of the second element (one). five is appended to the end of the ArrayList.
Finally, the first two elements are popped off.

Which of the following statements most accurately contrasts an ArrayList with an array?

A. An ArrayList object is mutable and may contain primitive values or object references whereas an
array contains object references.
B. An ArrayList object is mutable and contains object references whereas an array contains either
primitive values or object references.
C. An ArrayList object is immutable and contains object references whereas an array may contain
either primitive values or object references.
D. An ArrayList object is mutable and may contain primitive values or object references whereas an
array contains primitive values.
E. An ArrayList object is immutable and may contain primitive values or object references whereas an
array may contain either primitive values or object references.

47

Explanation:
The correct answer is B. An ArrayList object is mutable and contains object references whereas an
array contains either primitive values or object references.

A key concept in the insertion sort algorithm is the ability to correctly insert an element into a sorted list.
Which of the following insert methods correctly inserts the string s, given by the first argument, into the
sorted list words, given by the second argument?

I.

/**

* Precondition: words is sorted lexicographically in increasing order

*/

public static void insert(String s, ArrayList<String> words)

{

int i = 0;

boolean done = false;

while (i < words.size() && !done)

{

if (s.compareTo(words.get(i)) < 0)

{

words.add(i, s);

done = true;

}

i++;

}

if(!done)

{

words.add(s);

}

}

48

II.

/**

* Precondition: words is sorted lexicographically in increasing order

*/

public static void insert(String s, ArrayList<String> words)

{

int i = 0;

boolean done = false;

for (int i = 0; i < words.size() || !done; i++)

{

if (s.compareTo(words.get(i)) <= 0)

{

words.add(i, s);

done = true;

}

}

}

III.

/**

* Precondition: words is sorted lexicographically in increasing order

*/

public static void insert(String s, ArrayList<String> words)

{

int i = 0;

while (i < words.size())

{

if (s.compareTo(words.get(i)) >= 0)

49

{

words.add(s);

}

i++;

}

}

A. I
B. II
C. III
D. I and II
E. I and III

Explanation:
The correct answer is A. This is the only method that correctly inserts the string into the list. The algorithm
works by using a loop to iterate over each item in the list until it finds the first item in the list that
lexicographically precedes the string s. The string is inserted into the list in front of this item. Method II’s
for loop test is faulty, and will continue to iterate through the list, even after the string s is inserted into the
list. The string s may be incorrectly inserted into the list multiple times. The if statement in method III would
be appropriate for inserting the string s into a lexicographically sorted list in decreasing order.

50

2D Arrays
About 7.5–10% of the questions on your exam will cover 2D Arrays.

A two-dimensional (2D) array is an array of arrays, often thought of as a rectangular array of values, with
rows and columns. For the purposes of AP Computer Science A, all 2D arrays are rectangular, so that each
row has the same length.

Creating and Accessing 2D Arrays

The notation for creating and storying a 2D array is simply an extension of the notation for a 1D array. In
the statement below, type is the type of value being stored, rows is the number of rows, and cols is
the number of columns.

type[][] name = new type[rows][cols];

A 2D array can be initialized with items that are each initializer lists for a 1D array, as in the following
example:

int[][] values = new int[][] {{1, 2, 3}, {4, 5, 6}};

If arr is a 2D array, the expression arr[r] refers to the element at position r in arr. But this element
is itself a 1D array, so it can be further indexed with the expression arr[r][c].

The two subscripts should be thought of as the row and column positions in the rectangular array. The row
and column indices both start at 0. The following example creates the array shown:

0 1 2
0
1

1 2 3
4 5 6

Traversing 2D Arrays

Traversal of a 2D array is generally accomplished using nested loops. In a row-major traversal, the outer
loop iterates through each row, while the inner loop iterates through each column in the row. In a column-
major traversal, the order of the loops is reversed.

The number of rows in the 2D array arr is arr.length. The number columns can be accessed using
arr[x].length, where x is any valid row index.

51

Free Response Tip
If you use an enhanced for loop as the outer loop in a 2D array
traversal, keep in mind that the elements being accessed are themselves
arrays. For example, if the 2D array arr consists of int values, the
traversal might look like this:

for (int[] row: arr) {

for (int x: row) {

// traversal logic

}

}

All the standard 1D array algorithms can be applied to 2D arrays. For example, the following method will
find the average of all integers in a 2D array.

// precondition: values contains at least one row and one column
public static double average(int[][] values) {
double total = 0;
int count = 0;
for (int r = 0; r < values.length; r++) {
for (int c = 0; c < values[r].length; c++) {
total += values[r][c];
count++;

}
}

}

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 7.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 7.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 8.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 7.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 8.

52

Sample 2D Arrays Questions

Consider the following code segment, which contains line numbers. The loop is intended to return the sum of
both diagonals in a 2d array. A precondition is that the number of rows and columns in the 2d array are
equal. However, the program does not produce correct output.

/** Preconditions:

* array.length > 0

* array.length == array[0].length

*/

1 public int sumDiagonals(int[][] array)

2 {

3 int sum = 0;

4 for (int i = 1; i < array.length; i++)

5 {

6 for (int j = 1; j < array[0].length; j++)

7 {

8 if (i == j || j == array[0].length-1-i)

9 {

10 sum += array[i][j];

11 }

12 }

13 }

14 return sum;

15 }

Which of the below solutions will fix the program?

A. Change the name of the parameter throughout the method to ary.
B. In lines 4 and 6, initialize the variables i and j to 0 instead of 1.
C. In lines 4 and 6, change the test of each loop to array[0].length and array.length,
respectively.
D. In line 8, change the first Boolean expression to i != j.
E. Before the method returns, add a second nested for loop to account for the diagonal that spans from the
top-right to the bottom-left corner.

53

Explanation:
The correct answer is B. Both for loops should be initialized at 0, so that the iteration also includes the first
row and first column. Choice A is incorrect because the identifier array is legal in Java. Changing the
name would not affect the output of the program. Choice C is incorrect because the change would have no
effect on the output of the program. Choice D is incorrect because the current Boolean expression i == j
is correctly testing whether an element lies on the diagonal that spans from the top-left to the bottom-right.
Choice E is incorrect because no second loop is necessary. The disjunction of Boolean expressions on Line 8
tests whether an element lies on either diagonal.

A two-dimensional array of integers is used to model a w x h visualization of single digits where the
visualization has a width w and height h. If the array is named viz, and its width is 600 and its height is
400, which of the below lines of code correctly places the single digit 5 approximately in the center of the
visualization?

A. viz[400,600] = 5
B. viz[600][400] = 5
C. viz[300][200] = 5
D. viz[300,200] = 5
E. viz[200][300] = 5

Explanation:
The correct answer is E. In a two-dimensional array, the row is indexed first, followed by the column. The
center of the array is at row 200, column 300. Choice A incorrectly indexes a two-dimensional array.
Choice B is incorrect because this problem is asking for a 5 at the center of the visualization, and this
choice is indexing row 600, column 400. Choice C is incorrect because in a two-dimensional array, the row
is indexed first, followed by the column; in this choice, the column is indexed first. Choice D incorrectly
indexes a two-dimensional array.

Consider the following Util class that contains a mystery method:

public class Util

{

public static boolean mystery(int[][] a)

{

final int NUM = 0;

for (int[] row : a)

{

for (int i = 0; i < row.length; i++)

{

if (a[i] != NUM)

54

{

return false;

}

}

}

return true;

}

}

Which of the following choices best describes the method mystery?

A. The method transforms every element in the 2d array into 0, and returns true on success, false
otherwise.
B. The method returns true if there is an element in the 2d array that is nonzero.
C. The method counts the number of rows in the 2d array that are composed entirely of zeros.
D. The method counts the number of zeros in the 2d array.
E. The method returns true if every element in the 2d array is zero, false otherwise.

Explanation:
The correct answer is E. The traversal of the 2d array uses an outer for loop to access the rows of the 2d
array, and an inner loop to access each element of the row. The method does not alter any value in the 2d
array; returns true if all elements in the 2d array are zero; traverses each row in the 2d array but does
not count how many rows are composed entirely of zeros; and immediately returns upon finding the first
nonzero element.

55

Inheritance
About 5–10% of questions on your AP Computer Science A exam will cover the topic of inheritance.

In many situations, multiple classes share various characteristics and behaviors. There are various ways to
represent these shared attributes so that code can be shared and reused between the classes. One of
these ways is referred to as inheritance.

The Subclass Relationship

When a class is declared, it can extend another class:

public class B extends A { … }

This declaration creates an inheritance relationship between A and B. B is said to be a subclass of A.
Equivalently, A is a superclass of B. A subclass can only have a single superclass, but a superclass can have
many subclasses.

With inheritance, the attributes and behaviors of the superclass are automatically shared with the subclass.
In the previous example, if A has a method called doSomething, and x is a variable of type B, then
the call x.doSomething() is valid and will work as expected.

Free Response Tip

When writing a subclass, do not declare any instance
variables that store the same information, or have the same
name as instance variables that exist in the superclass. In
addition, be sure that you only duplicate methods from the
superclass if it needs to be overridden for changed or
added functionality.

56

Subclass Constructors and super

Constructors are not inherited from a superclass. In general, subclass constructors must be explicitly written
in the subclass. Within a subclass constructor, the super keyword can be used to call a superclass
constructor, as in the following example:

public class Pet {
private String name;

public Pet() {
name = "";

}

public Pet(String petName) {
name = petName;

}
}

public class Dog extends Pet {
public Dog(dogName, dogBreed) {
private String breed;
super(dogName);
breed = dogBreed;

}
}

In this example, the Dog constructor calls the Pet constructor and passes dogName to it so that it can be
stored in the name instance variable.

The call to a superclass constructor must be the first line in a subclass constructor. If the superclass has a
default (no parameter) constructor, the call to super is optional; the default constructor will be called
automatically if it is omitted.

It is very important to remember that although a subclass inherits all the attributes and behaviors of its
superclass, it cannot access private variables or methods from the superclass.

Overriding Methods

When a subclass and its superclass both contain a method with the same signature, the method in the
subclass is said to override the method in the superclass. Any call to the method from an object of the
subclass type will result in the subclass method being called. Within the subclass, the super keyword can
be used with dot notation to refer explicitly to a superclass method.

57

To illustrate this, consider the following classes and variable declarations.

public class Fruit {
public String getInfo() {
return "Juicy";

}
}

public class Peach extends Fruit {
public String getInfo() {
return "Soft";

}
}

public class Apple extends Fruit {
public String getInfo() {
return "Crunchy and " + super.getInfo();

}
}

Peach p = new Peach();
Apple a = new Apple();

The call p.getInfo() will return "Soft", while a.getInfo() will return "Crunchy and
Juicy".

Polymorphism

When two classes have an inheritance relationship, an is-a relationship is created between the classes. One
of the most important consequences of this is that an object of the subclass type can be assigned to a
reference of the superclass type. For example, consider the following declarations:

public class Vehicle { … }
public class Car extends Vehicle { … }

This creates the following relationship: A Car is-a Vehicle. Because of this relationship, the following
assignments are all valid:

Vehicle myVehicle = new Vehicle();
Car myCar = new Car();
Vehicle myOtherCar = new Car();

The first two are straightforward, while in the third statement, a Car object is assigned to a Vehicle
reference variable. This is valid since Car extends Vehicle, and so a Car is-a Vehicle. Note
that the opposite direction would not be valid; you could not store a Vehicle object in a Car
reference, since the is-a relationship does not exist in that direction.

Being able to do this is very useful in a variety of situations. Consider, for example, an object of type
ArrayList<Vehicle>. Then objects of both Vehicle and Car types can be added to this list. For

58

another example, think about a method that declares a formal parameter of type Vehicle. Both a
Vehicle and a Car could be passed as actual parameters to this method.

When a superclass is itself a subclass of another class, an inheritance hierarchy is formed. In particular, if A
and B are classes such that an A is-a B, and a B is-a C, then an A is-a C as well. In other words, the is-a
relationship is transitive.

When an object is stored in a reference of a different type, there are two important facts concerning the
way method calls are treated at compile- and run-times.

• The methods declared in, or inherited by, the reference type determine the validity of a method
call as decided by the compiler.

• The method in the object type determines what code is actually executed at run-time.

To demonstrate, consider the following declarations:

public class Person {

private String myName;

public Person(String name) {
myName = name;

}
public String getTitle() {
return "Person";

}
public String getName() {
return name;

}
}

public class Student {
public Student(String name) {
super(name);

}

public String getTitle() {
return "Student";

}

public double getGPA() {
return 3.8;

}
}

Person stu = new Student("Cameron");
System.out.println(stu.getName()); // Line 1
System.out.println(stu.getTitle()); // Line 2
System.out.println(stu.getGPA()); // Line 3

59

First consider Line 1. The method call stu.getName() is valid, since the reference type of stu is
Person, and Person declares a getName method. The object itself is a Student, which inherits the
getName method, so when it is executed the inherited code is used.

Now consider Line 2. As before, the method call stu.getTitle() is valid since the reference type of
stu is Person, and Person declares a getTitle method. Note that at this stage the presence of the
overridden getTitle method in Student is irrelevant. It is only at run-time, when the code is being
executed, that the object is examined, and the overridden method found and run.

Finally, consider Line 3. The reference type of stu is Person, and Person does not declare or inherit a
getGPA method, so this method call will not compile. It does not matter that the object happens to actually
be of type Student.

If a class does not explicitly extend another class, it automatically extends Object, a class that is
included in the Java library. Therefore, Object is the ultimate superclass of every other Java class. This
means that any type of object can be assigned to an Object reference.

The Object class has the following two methods, which are inherited by all other classes:

Method Description
boolean equals(Object other) Returns true if other is an alias of this, and

false otherwise.
String toString() Returns a string representation of this, including

its type and location in memory.

These implementations are usually not useful, so many classes override the implementations of the equals
and toString methods to provide appropriate and type-specific functionality.

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 9.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 10.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 9.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 9.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 11.

60

Sample Inheritance Questions

Consider the following class definitions.

public class Idea1

{

public void total(int n)

{

System.out.print(n+3);

}

}

public class Idea2 extends Idea1

{

public void total(int n)

{

n += 2;

System.out.print(n);

}

}

The following code segment appears in a class other than Idea1 and Idea2.

Idea1 t = new Idea2();

t.total(5);

What is printed as a result of executing the code segment?

A. 7
B. 8
C. 5
D. 10
E. 15

Explanation:
The correct answer is A. Because there is no super call, only the total method in class Idea2 is
executed. Choice B is incorrect because the total method in Idea1 is overridden by the total method
in Idea2; the total method in Idea1 is not called. Choice C is incorrect because the total method in

61

Idea2 contains a += operator, which adds 2 to the passed in value of 5. Choices D and E are incorrect
because the total method in Idea1 is overridden by the total method in Idea2; the total
method in Class1 is not called.

Consider the following classes, which model a vehicle and car.

public class Vehicle

{

private int xloc = 0;

private int yloc = 0;

public void goForward()

{

System.out.println("Moving forward");

}

}

public class Car extends Vehicle

{

public void goForward()

{

System.out.println("Wheels are moving");

xloc += 3;

}

}

Which of the following statements and method calls will create an instantiated object that produces the
following output using polymorphism?

Wheels are moving

62

Wheels are moving

Location: 6,0

A.

Vehicle v1 = new Car();

v1.goForward();

v1.goForward();

System.out.println("Location:" + v1.xloc + "," + v1.yloc);

B.

Car c1 = new Car();

c1.goForward();

c1.goForward();
System.out.println("Location:" + c1.xloc + "," + c1.yloc);

C.

Car v1 = new Vehicle();

v1.goForward();

v1.goForward();

System.out.println("Location:" + v1.xloc + "," + v1.yloc);

D. A and C
E. A, B, and C

Explanation:
The correct answer is A. An instantiated object for Vehicle is correctly instantiated. The method
goForward at runtime will execute the definition provided in the Vehicle class. Choice B is incorrect
because the instantiated object is only a reference to the Car class, not Vehicle. Choice C is incorrect
because the instantiation is written backwards. A reference variable typically has the type of a superclass
and is instantiated with a subclass.

Consider the following BankAccount class, which is now extended by the class
SuperSavingsAccount.

class BankAccount

{

63

private double balance = 5.00;

/**

* @param balance: starting balance of the account

*/

public BankAccount(double balance)

{

/* implementation not shown */

}

public void deposit(double d)

{

balance += d;

}

public void withdraw(double w)

{

if (balance >= w)

{

balance -= w;

}

}

public double getBalance()

{

return balance;

}

}

class SuperSavingsAccount extends BankAccount

64

{

private double interestRate;

/**

* Constructor.

* @param qualify - the value true sets the account's interest rat
e at 20%, otherwise is set to 5%

*/

public SuperSavingsAccount(boolean qualify)

{

if (qualify)

{

interestRate = .2;

}

else

{

interestRate = .05;

}

}

}

What is the value of the account’s starting balance if the following statement is used to create an instance
of a SuperSavingsAccount object?

BankAccount ba = new SuperSavingsAccount(true);

A. The code segment has a compiler error. There is no starting balance because the constructor to
BankAccount is never called.
B. $0.00
C. true
D. 20%
E. $5.00

Explanation:
The correct answer is A. The constructor in the superclass BankAccount must be explicitly called in the
subclass SuperSavingsAccount because BankAccount does not have a no-argument constructor.

65

Afterwards, the starting balance will be set to the value of the argument passed to the BankAccount
constructor. When a subclass’s constructor does not explicitly call a superclass’s constructor using super,
Java inserts a call to the superclass’s no-argument constructor. However, there is no no-argument
constructor in BankAccount, so the code segment has a compiler error.

66

Recursion
Finally, 5–7.5% of the questions on your AP exam will cover the topic of Recursion.

Recursive Methods

A method is called recursive if it calls itself. On the AP Computer Science A exam, you will be expected to
understand and trace the logic of recursive methods, but you will not have to write any yourself.

A base case in a recursive method is an execution path that does not result in the method calling itself.
Every recursive method must have at least one base case, or it will eventually cause an error when the
number of times it has been called exceeds a threshold (which differs by system configuration).

Every recursive call has its own set of parameters and local variables. When a task is done recursively, the
parameters are used to track the progress of the task. This is analogous to the way a loop variable keeps
track of the progress through a for loop. In fact, every recursive method can theoretically be replicated
using loops instead of recursion, although doing so may not be straightforward.

Tracing Recursive Method Calls

When tracing the execution of recursive methods, it is important to keep track of the parameters of each
call. This is best demonstrated with an example:

public int calc(int x) {
if (x == 0) {
return 0;

}
else if (x < 0) {
return -2 + calc(x + 1);

}
else {
return 2 + calc(x – 1);

}
}

This method has two recursive calls, and a single base case (when x == 0).

Consider the method call calc(2). The parameter x is 2, so we will refer to this as the x=2 method. The
else path is taken, so the expression 2 + calc(1) needs to be calculated. Therefore, calc is called
with a parameter of 1. In this x=1 method, the else path is taken again, so calc is called with a
parameter of 0. In this method the expression in the initial if statement is true, so 0 is immediately
returned. Control now returns to the x=1 call, which can now calculate and return 2 + 0, or 2. Finally,
control returns to the initial x=2 method. The expression 2 + calc(1) evaluates to 2 + 2, or 4, so this
is the final value returned by the initial call to calc(2).

Recursive techniques can be used to traverse strings and arrays. Commonly, a parameter is used to
represent a position in the string (or array), which is incremented in successive recursive calls. In this way,

67

the entire string (or array) can be reached. The base case is when this position has reached or exceeded
the valid indices in the string (or array). For example, the following method will determine whether or not
an array of integers contains the given value:

public boolean contains(int[] arr, int index, int target) {
if (index >= arr.length) {
return false;

}
else if (arr[index] == target) {
return true;

}
else {
return contains(arr, index + 1, target);

}
}

The initial call to the method needs to specify index 0 as a starting point. For example, to search the array
myArray for the value 5, you would call contains(myArray, 0, 5).

Another technique useful for strings is to pass substrings to the recursive call. This eliminates the need for a
parameter representing a position. For example, the following method will reverse a string:

public String reverse(String str) {
if (str.length() <= 1) {
// a string of length 0 or 1 is the same as its reversal
return 1;

}
else {
// reverse everything except the first character, and concatenate
// it to the end of the result
return reverse(str.substring(1)) + str.substring(0, 1);

}
}

Recursive Searching and Sorting

If an array or ArrayList is sorted, it can be searched using the binary search algorithm. This is a search
algorithm that is, in most cases, significantly more efficient than sequential/linear search. It is worth
emphasizing once again, however, that it can only be applied when a list is already in sorted order.

Binary search works by keeping track of the beginning and ending positions of the section of the list that
remains to be searched. By taking the average of these two positions, and then examining the item at the
position calculated, half of the list can be eliminated in the next iteration. This continues until the item has
been found, or until there is no part of the list remaining, in which case the conclusion is that the item does
not exist in the list.

This algorithm can be implemented either iteratively or recursively. In the iterative implementation, local
variables keep track of the starting and ending positions, and a while loop controls the iteration of the

68

logic. In the recursive implementation, the start and end positions are kept track of via a pair of recursive
call parameters.

There are also various recursive sorting algorithms, some of which are much more efficient than the insertion
sort and selection sort algorithms mentioned earlier. One of the most common is merge sort. This algorithm
relies on merging, which is the process of taking two lists that are already in sorted order and combining
them into a single larger sorted list.

Suggested Reading
• Horstmann. Big Java: Early Objects, 6th edition. Chapter 13.
• Gaddis & Muganda. Starting Out with Java, 4th edition. Chapter 15.
• Lewis & Loftus. Java Software Solutions, 9th edition. Chapter 12.
• Deitel & Deitel. Java: How to Program, Early Objects, 11th edition. Chapter 18.
• Liang. Introduction to Java Programming, Brief Version, 11th edition. Chapter 18.

69

Sample Recursion Questions

Consider the following recursive method.

public static int mystery(int n)

{

if (n <= 1)

{

return n;

}

else

{

return mystery(n/2) + mystery(n/3);

}

}

What value is returned as a result of the call mystery(10);?

A. 8
B. 13
C. 7
D. 4
E. 5

Explanation:

The correct answer is D. The call mystery(10) returns the expression mystery(5)+mystery(3),
which in turn returns the expression (mystery(2)+mystery(1))+mystery(3), which is expanded
to ((mystery(1)+mystery(0))+mystery(1))+(mystery(1)+mystery(1)), which
evaluates to, via the base case of the recursion, 1+0+1+1+1 = 4.

Consider a method balancedParens that is intended to use recursion to return whether a String is
composed of zero or more left parentheses, immediately followed by an equal number of right
parentheses. For example, the Strings “”, “()”, and “(((())))” are balanced, while the Strings “(“, “()()”, and
“((())” are not balanced.

public static boolean balancedParens(String s)

{

70

if (s.length() == 0)

{

return /* missing code */ ;

}

else if (s.length() == 1)

{

return /* missing code */ ;

}

else if (s.charAt(0) != '(' || s.charAt(s.length()-1) != ')')

{

return /* missing code */ ;

}

else

{

return balancedParens(s.substring(1,s.length()-1));

}

}

What are the Boolean values that should replace /* missing code */ so that the
balancedParens method works correctly?

A. false false false
B. false false true
C. true false false
D. true true true
E. true false true

Explanation:
The correct answer is C. The first if statement should return true, because the empty string is balanced by
definition. The second if statement should return false, because a string of one character cannot be
balanced. The third if statement should return false because a balanced string must begin with (and end
with).

71

Consider the following recursive implementation of a binary search algorithm.

/**

* Precondition:

*/

public static int binarySearch(int v, int[] numbers, int start, int en
d)

{

int mid = (start + end) / 2;

if (end < start)

{

return -1;

}

if (v > numbers[mid])

{

return binarySearch(v, numbers, start, mid-1);

}

if (v < numbers[mid])

{

return binarySearch(v, numbers, mid+1, end);

}

if (v == numbers[mid])

{

return mid;

}

return -1;

}

72

Which of the following choices best describes the precondition of the method? To search for the value 17
in some array arr, the initial call to the method will be: binarySearch(17, arr, 0,
arr.length-1).

A. The array numbers is unsorted.
B. The array numbers is already sorted in increasing order.
C. The array numbers is already sorted in decreasing order.
D. The method will crash if the passed in array numbers is empty.
E. The array numbers contains only positive integers.

Explanation:

The correct answer is C. This method looks at the value in the middle of the sorted array. If the value
being searched for is greater than this value, the method recursively searches the left portion of the sorted
array, implying that the array must be in decreasing order. A binary search algorithm assumes that the
array being searched is already in sorted order. If the passed in array is empty, the value of the
parameter end will be less than start, and the method will immediately return -1 rather than crash.
Finally, this binary search implementation can work with both positive and negative integers. The value of -
1 is being returned by the method to indicate if the value being searched for is not found.

73

